Spaces:
Runtime error
Runtime error
Damian Stewart
commited on
Commit
·
0002379
1
Parent(s):
ac5ee04
support for different base models
Browse files- StableDiffuser.py +29 -52
- app.py +56 -15
- train.py +7 -6
StableDiffuser.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import argparse
|
|
|
2 |
|
3 |
import torch
|
4 |
from baukit import TraceDict
|
@@ -36,71 +37,68 @@ def default_parser():
|
|
36 |
class StableDiffuser(torch.nn.Module):
|
37 |
|
38 |
def __init__(self,
|
39 |
-
scheduler='LMS'
|
|
|
40 |
):
|
41 |
|
42 |
super().__init__()
|
43 |
|
44 |
# Load the autoencoder model which will be used to decode the latents into image space.
|
45 |
self.vae = AutoencoderKL.from_pretrained(
|
46 |
-
|
47 |
|
48 |
# Load the tokenizer and text encoder to tokenize and encode the text.
|
49 |
self.tokenizer = CLIPTokenizer.from_pretrained(
|
50 |
-
"
|
51 |
self.text_encoder = CLIPTextModel.from_pretrained(
|
52 |
-
"
|
53 |
|
54 |
# The UNet model for generating the latents.
|
55 |
self.unet = UNet2DConditionModel.from_pretrained(
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
if scheduler == 'LMS':
|
62 |
self.scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
|
63 |
elif scheduler == 'DDIM':
|
64 |
-
self.scheduler = DDIMScheduler.from_pretrained(
|
65 |
elif scheduler == 'DDPM':
|
66 |
-
self.scheduler = DDPMScheduler.from_pretrained(
|
67 |
|
68 |
self.eval()
|
69 |
|
70 |
def get_noise(self, batch_size, img_size, generator=None):
|
71 |
-
|
72 |
param = list(self.parameters())[0]
|
73 |
-
|
74 |
return torch.randn(
|
75 |
(batch_size, self.unet.in_channels, img_size // 8, img_size // 8),
|
76 |
generator=generator).type(param.dtype).to(param.device)
|
77 |
|
78 |
def add_noise(self, latents, noise, step):
|
79 |
-
|
80 |
return self.scheduler.add_noise(latents, noise, torch.tensor([self.scheduler.timesteps[step]]))
|
81 |
|
82 |
def text_tokenize(self, prompts):
|
83 |
-
|
84 |
return self.tokenizer(prompts, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
85 |
|
86 |
def text_detokenize(self, tokens):
|
87 |
-
|
88 |
return [self.tokenizer.decode(token) for token in tokens if token != self.tokenizer.vocab_size - 1]
|
89 |
|
90 |
def text_encode(self, tokens):
|
91 |
-
|
92 |
return self.text_encoder(tokens.input_ids.to(self.unet.device))[0]
|
93 |
|
94 |
def decode(self, latents):
|
95 |
-
|
96 |
return self.vae.decode(1 / self.vae.config.scaling_factor * latents).sample
|
97 |
|
98 |
def encode(self, tensors):
|
99 |
-
|
100 |
return self.vae.encode(tensors).latent_dist.mode() * 0.18215
|
101 |
|
102 |
def to_image(self, image):
|
103 |
-
|
104 |
image = (image / 2 + 0.5).clamp(0, 1)
|
105 |
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
106 |
images = (image * 255).round().astype("uint8")
|
@@ -112,25 +110,16 @@ class StableDiffuser(torch.nn.Module):
|
|
112 |
self.scheduler.set_timesteps(n_steps, device=self.unet.device)
|
113 |
|
114 |
def get_initial_latents(self, n_imgs, img_size, n_prompts, generator=None):
|
115 |
-
|
116 |
noise = self.get_noise(n_imgs, img_size, generator=generator).repeat(n_prompts, 1, 1, 1)
|
117 |
-
|
118 |
latents = noise * self.scheduler.init_noise_sigma
|
119 |
-
|
120 |
return latents
|
121 |
|
122 |
-
def get_text_embeddings(self, prompts, n_imgs):
|
123 |
-
|
124 |
text_tokens = self.text_tokenize(prompts)
|
125 |
-
|
126 |
text_embeddings = self.text_encode(text_tokens)
|
127 |
-
|
128 |
-
unconditional_tokens = self.text_tokenize([""] * len(prompts))
|
129 |
-
|
130 |
unconditional_embeddings = self.text_encode(unconditional_tokens)
|
131 |
-
|
132 |
text_embeddings = torch.cat([unconditional_embeddings, text_embeddings]).repeat_interleave(n_imgs, dim=0)
|
133 |
-
|
134 |
return text_embeddings
|
135 |
|
136 |
def predict_noise(self,
|
@@ -174,9 +163,7 @@ class StableDiffuser(torch.nn.Module):
|
|
174 |
trace = None
|
175 |
|
176 |
for iteration in tqdm(range(start_iteration, end_iteration), disable=not show_progress):
|
177 |
-
|
178 |
if trace_args:
|
179 |
-
|
180 |
trace = TraceDict(self, **trace_args)
|
181 |
|
182 |
noise_pred = self.predict_noise(
|
@@ -189,17 +176,13 @@ class StableDiffuser(torch.nn.Module):
|
|
189 |
output = self.scheduler.step(noise_pred, self.scheduler.timesteps[iteration], latents)
|
190 |
|
191 |
if trace_args:
|
192 |
-
|
193 |
trace.close()
|
194 |
-
|
195 |
trace_steps.append(trace)
|
196 |
|
197 |
latents = output.prev_sample
|
198 |
|
199 |
if return_steps or iteration == end_iteration - 1:
|
200 |
-
|
201 |
output = output.pred_original_sample if pred_x0 else latents
|
202 |
-
|
203 |
if return_steps:
|
204 |
latents_steps.append(output.cpu())
|
205 |
else:
|
@@ -210,6 +193,7 @@ class StableDiffuser(torch.nn.Module):
|
|
210 |
@torch.no_grad()
|
211 |
def __call__(self,
|
212 |
prompts,
|
|
|
213 |
img_size=512,
|
214 |
n_steps=50,
|
215 |
n_imgs=1,
|
@@ -221,17 +205,12 @@ class StableDiffuser(torch.nn.Module):
|
|
221 |
assert 0 <= n_steps <= 1000
|
222 |
|
223 |
if not isinstance(prompts, list):
|
224 |
-
|
225 |
prompts = [prompts]
|
226 |
|
227 |
self.set_scheduler_timesteps(n_steps)
|
228 |
-
|
229 |
latents = self.get_initial_latents(n_imgs, img_size, len(prompts), generator=generator)
|
230 |
-
|
231 |
-
text_embeddings = self.get_text_embeddings(prompts,n_imgs=n_imgs)
|
232 |
-
|
233 |
end_iteration = end_iteration or n_steps
|
234 |
-
|
235 |
latents_steps, trace_steps = self.diffusion(
|
236 |
latents,
|
237 |
text_embeddings,
|
@@ -242,19 +221,18 @@ class StableDiffuser(torch.nn.Module):
|
|
242 |
latents_steps = [self.decode(latents.to(self.unet.device)) for latents in latents_steps]
|
243 |
images_steps = [self.to_image(latents) for latents in latents_steps]
|
244 |
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
|
254 |
images_steps = list(zip(*images_steps))
|
255 |
|
256 |
if trace_steps:
|
257 |
-
|
258 |
return images_steps, trace_steps
|
259 |
|
260 |
return images_steps
|
@@ -263,7 +241,6 @@ class StableDiffuser(torch.nn.Module):
|
|
263 |
if __name__ == '__main__':
|
264 |
|
265 |
parser = default_parser()
|
266 |
-
|
267 |
args = parser.parse_args()
|
268 |
|
269 |
diffuser = StableDiffuser(seed=args.seed, scheduler='DDIM').to(torch.device(args.device)).half()
|
|
|
1 |
import argparse
|
2 |
+
import traceback
|
3 |
|
4 |
import torch
|
5 |
from baukit import TraceDict
|
|
|
37 |
class StableDiffuser(torch.nn.Module):
|
38 |
|
39 |
def __init__(self,
|
40 |
+
scheduler='LMS',
|
41 |
+
repo_id_or_path="CompVis/stable-diffusion-v1-4",
|
42 |
):
|
43 |
|
44 |
super().__init__()
|
45 |
|
46 |
# Load the autoencoder model which will be used to decode the latents into image space.
|
47 |
self.vae = AutoencoderKL.from_pretrained(
|
48 |
+
repo_id_or_path, subfolder="vae")
|
49 |
|
50 |
# Load the tokenizer and text encoder to tokenize and encode the text.
|
51 |
self.tokenizer = CLIPTokenizer.from_pretrained(
|
52 |
+
repo_id_or_path, subfolder="tokenizer")
|
53 |
self.text_encoder = CLIPTextModel.from_pretrained(
|
54 |
+
repo_id_or_path, subfolder="text_encoder")
|
55 |
|
56 |
# The UNet model for generating the latents.
|
57 |
self.unet = UNet2DConditionModel.from_pretrained(
|
58 |
+
repo_id_or_path, subfolder="unet")
|
59 |
+
|
60 |
+
try:
|
61 |
+
self.feature_extractor = CLIPFeatureExtractor.from_pretrained(repo_id_or_path, subfolder="feature_extractor")
|
62 |
+
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(repo_id_or_path, subfolder="safety_checker")
|
63 |
+
except Exception as error:
|
64 |
+
print(f"caught exception {error} making feature extractor / safety checker")
|
65 |
+
self.feature_extractor = None
|
66 |
+
self.safety_checker = None
|
67 |
|
68 |
if scheduler == 'LMS':
|
69 |
self.scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
|
70 |
elif scheduler == 'DDIM':
|
71 |
+
self.scheduler = DDIMScheduler.from_pretrained(repo_id_or_path, subfolder="scheduler")
|
72 |
elif scheduler == 'DDPM':
|
73 |
+
self.scheduler = DDPMScheduler.from_pretrained(repo_id_or_path, subfolder="scheduler")
|
74 |
|
75 |
self.eval()
|
76 |
|
77 |
def get_noise(self, batch_size, img_size, generator=None):
|
|
|
78 |
param = list(self.parameters())[0]
|
|
|
79 |
return torch.randn(
|
80 |
(batch_size, self.unet.in_channels, img_size // 8, img_size // 8),
|
81 |
generator=generator).type(param.dtype).to(param.device)
|
82 |
|
83 |
def add_noise(self, latents, noise, step):
|
|
|
84 |
return self.scheduler.add_noise(latents, noise, torch.tensor([self.scheduler.timesteps[step]]))
|
85 |
|
86 |
def text_tokenize(self, prompts):
|
|
|
87 |
return self.tokenizer(prompts, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
88 |
|
89 |
def text_detokenize(self, tokens):
|
|
|
90 |
return [self.tokenizer.decode(token) for token in tokens if token != self.tokenizer.vocab_size - 1]
|
91 |
|
92 |
def text_encode(self, tokens):
|
|
|
93 |
return self.text_encoder(tokens.input_ids.to(self.unet.device))[0]
|
94 |
|
95 |
def decode(self, latents):
|
|
|
96 |
return self.vae.decode(1 / self.vae.config.scaling_factor * latents).sample
|
97 |
|
98 |
def encode(self, tensors):
|
|
|
99 |
return self.vae.encode(tensors).latent_dist.mode() * 0.18215
|
100 |
|
101 |
def to_image(self, image):
|
|
|
102 |
image = (image / 2 + 0.5).clamp(0, 1)
|
103 |
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
104 |
images = (image * 255).round().astype("uint8")
|
|
|
110 |
self.scheduler.set_timesteps(n_steps, device=self.unet.device)
|
111 |
|
112 |
def get_initial_latents(self, n_imgs, img_size, n_prompts, generator=None):
|
|
|
113 |
noise = self.get_noise(n_imgs, img_size, generator=generator).repeat(n_prompts, 1, 1, 1)
|
|
|
114 |
latents = noise * self.scheduler.init_noise_sigma
|
|
|
115 |
return latents
|
116 |
|
117 |
+
def get_text_embeddings(self, prompts, negative_prompts, n_imgs):
|
|
|
118 |
text_tokens = self.text_tokenize(prompts)
|
|
|
119 |
text_embeddings = self.text_encode(text_tokens)
|
120 |
+
unconditional_tokens = self.text_tokenize(negative_prompts)
|
|
|
|
|
121 |
unconditional_embeddings = self.text_encode(unconditional_tokens)
|
|
|
122 |
text_embeddings = torch.cat([unconditional_embeddings, text_embeddings]).repeat_interleave(n_imgs, dim=0)
|
|
|
123 |
return text_embeddings
|
124 |
|
125 |
def predict_noise(self,
|
|
|
163 |
trace = None
|
164 |
|
165 |
for iteration in tqdm(range(start_iteration, end_iteration), disable=not show_progress):
|
|
|
166 |
if trace_args:
|
|
|
167 |
trace = TraceDict(self, **trace_args)
|
168 |
|
169 |
noise_pred = self.predict_noise(
|
|
|
176 |
output = self.scheduler.step(noise_pred, self.scheduler.timesteps[iteration], latents)
|
177 |
|
178 |
if trace_args:
|
|
|
179 |
trace.close()
|
|
|
180 |
trace_steps.append(trace)
|
181 |
|
182 |
latents = output.prev_sample
|
183 |
|
184 |
if return_steps or iteration == end_iteration - 1:
|
|
|
185 |
output = output.pred_original_sample if pred_x0 else latents
|
|
|
186 |
if return_steps:
|
187 |
latents_steps.append(output.cpu())
|
188 |
else:
|
|
|
193 |
@torch.no_grad()
|
194 |
def __call__(self,
|
195 |
prompts,
|
196 |
+
negative_prompts,
|
197 |
img_size=512,
|
198 |
n_steps=50,
|
199 |
n_imgs=1,
|
|
|
205 |
assert 0 <= n_steps <= 1000
|
206 |
|
207 |
if not isinstance(prompts, list):
|
|
|
208 |
prompts = [prompts]
|
209 |
|
210 |
self.set_scheduler_timesteps(n_steps)
|
|
|
211 |
latents = self.get_initial_latents(n_imgs, img_size, len(prompts), generator=generator)
|
212 |
+
text_embeddings = self.get_text_embeddings(prompts,negative_prompts,n_imgs=n_imgs)
|
|
|
|
|
213 |
end_iteration = end_iteration or n_steps
|
|
|
214 |
latents_steps, trace_steps = self.diffusion(
|
215 |
latents,
|
216 |
text_embeddings,
|
|
|
221 |
latents_steps = [self.decode(latents.to(self.unet.device)) for latents in latents_steps]
|
222 |
images_steps = [self.to_image(latents) for latents in latents_steps]
|
223 |
|
224 |
+
if self.safety_checker is not None:
|
225 |
+
for i in range(len(images_steps)):
|
226 |
+
self.safety_checker = self.safety_checker.float()
|
227 |
+
safety_checker_input = self.feature_extractor(images_steps[i], return_tensors="pt").to(latents_steps[0].device)
|
228 |
+
image, has_nsfw_concept = self.safety_checker(
|
229 |
+
images=latents_steps[i].float().cpu().numpy(), clip_input=safety_checker_input.pixel_values.float()
|
230 |
+
)
|
231 |
+
images_steps[i][0] = self.to_image(torch.from_numpy(image))[0]
|
232 |
|
233 |
images_steps = list(zip(*images_steps))
|
234 |
|
235 |
if trace_steps:
|
|
|
236 |
return images_steps, trace_steps
|
237 |
|
238 |
return images_steps
|
|
|
241 |
if __name__ == '__main__':
|
242 |
|
243 |
parser = default_parser()
|
|
|
244 |
args = parser.parse_args()
|
245 |
|
246 |
diffuser = StableDiffuser(seed=args.seed, scheduler='DDIM').to(torch.device(args.device)).half()
|
app.py
CHANGED
@@ -1,20 +1,27 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
from finetuning import FineTunedModel
|
4 |
from StableDiffuser import StableDiffuser
|
5 |
from train import train
|
6 |
|
7 |
import os
|
8 |
-
model_map = {'Van Gogh'
|
9 |
'Pablo Picasso': 'models/pablopicasso.pt',
|
10 |
-
'Car'
|
11 |
'Garbage Truck': 'models/garbagetruck.pt',
|
12 |
'French Horn': 'models/frenchhorn.pt',
|
13 |
-
'Kilian Eng'
|
14 |
-
'Thomas Kinkade'
|
15 |
-
'Tyler Edlin'
|
16 |
'Kelly McKernan': 'models/kellymckernan.pt',
|
17 |
'Rembrandt': 'models/rembrandt.pt' }
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
ORIGINAL_SPACE_ID = 'baulab/Erasing-Concepts-In-Diffusion'
|
20 |
SPACE_ID = os.getenv('SPACE_ID')
|
@@ -31,8 +38,6 @@ class Demo:
|
|
31 |
self.training = False
|
32 |
self.generating = False
|
33 |
|
34 |
-
self.diffuser = StableDiffuser(scheduler='DDIM').to('cuda').eval().half()
|
35 |
-
|
36 |
with gr.Blocks() as demo:
|
37 |
self.layout()
|
38 |
demo.queue(concurrency_count=5).launch()
|
@@ -64,6 +69,9 @@ class Demo:
|
|
64 |
label="Prompt",
|
65 |
info="Prompt to generate"
|
66 |
)
|
|
|
|
|
|
|
67 |
|
68 |
with gr.Row():
|
69 |
|
@@ -78,6 +86,19 @@ class Demo:
|
|
78 |
label="Seed",
|
79 |
value=42
|
80 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
with gr.Column(scale=2):
|
83 |
|
@@ -108,6 +129,21 @@ class Demo:
|
|
108 |
|
109 |
with gr.Column(scale=3):
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
self.prompt_input = gr.Text(
|
112 |
placeholder="Enter prompt...",
|
113 |
label="Prompt to Erase",
|
@@ -156,8 +192,11 @@ class Demo:
|
|
156 |
|
157 |
self.infr_button.click(self.inference, inputs = [
|
158 |
self.prompt_input_infr,
|
|
|
159 |
self.seed_infr,
|
160 |
-
self.
|
|
|
|
|
161 |
],
|
162 |
outputs=[
|
163 |
self.image_new,
|
@@ -165,6 +204,8 @@ class Demo:
|
|
165 |
]
|
166 |
)
|
167 |
self.train_button.click(self.train, inputs = [
|
|
|
|
|
168 |
self.prompt_input,
|
169 |
self.train_method_input,
|
170 |
self.neg_guidance_input,
|
@@ -174,7 +215,7 @@ class Demo:
|
|
174 |
outputs=[self.train_button, self.train_status, self.download, self.model_dropdown]
|
175 |
)
|
176 |
|
177 |
-
def train(self, prompt, train_method, neg_guidance, iterations, lr, pbar = gr.Progress(track_tqdm=True)):
|
178 |
|
179 |
if self.training:
|
180 |
return [gr.update(interactive=True, value='Train'), gr.update(value='Someone else is training... Try again soon'), None, gr.update()]
|
@@ -200,7 +241,7 @@ class Demo:
|
|
200 |
|
201 |
self.training = True
|
202 |
|
203 |
-
train(prompt, modules, frozen, iterations, neg_guidance, lr, save_path)
|
204 |
|
205 |
self.training = False
|
206 |
|
@@ -211,22 +252,21 @@ class Demo:
|
|
211 |
return [gr.update(interactive=True, value='Train'), gr.update(value='Done Training! \n Try your custom model in the "Test" tab'), save_path, gr.Dropdown.update(choices=list(model_map.keys()), value='Custom')]
|
212 |
|
213 |
|
214 |
-
def inference(self, prompt, seed, model_name, pbar = gr.Progress(track_tqdm=True)):
|
215 |
|
216 |
seed = seed or 42
|
217 |
-
|
218 |
generator = torch.manual_seed(seed)
|
219 |
-
|
220 |
model_path = model_map[model_name]
|
221 |
-
|
222 |
checkpoint = torch.load(model_path)
|
223 |
|
|
|
224 |
finetuner = FineTunedModel.from_checkpoint(self.diffuser, checkpoint).eval().half()
|
225 |
-
|
226 |
torch.cuda.empty_cache()
|
227 |
|
228 |
images = self.diffuser(
|
229 |
prompt,
|
|
|
|
|
230 |
n_steps=50,
|
231 |
generator=generator
|
232 |
)
|
@@ -242,6 +282,7 @@ class Demo:
|
|
242 |
|
243 |
images = self.diffuser(
|
244 |
prompt,
|
|
|
245 |
n_steps=50,
|
246 |
generator=generator
|
247 |
)
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
import os
|
4 |
from finetuning import FineTunedModel
|
5 |
from StableDiffuser import StableDiffuser
|
6 |
from train import train
|
7 |
|
8 |
import os
|
9 |
+
model_map = {'Van Gogh': 'models/vangogh.pt',
|
10 |
'Pablo Picasso': 'models/pablopicasso.pt',
|
11 |
+
'Car': 'models/car.pt',
|
12 |
'Garbage Truck': 'models/garbagetruck.pt',
|
13 |
'French Horn': 'models/frenchhorn.pt',
|
14 |
+
'Kilian Eng': 'models/kilianeng.pt',
|
15 |
+
'Thomas Kinkade': 'models/thomaskinkade.pt',
|
16 |
+
'Tyler Edlin': 'models/tyleredlin.pt',
|
17 |
'Kelly McKernan': 'models/kellymckernan.pt',
|
18 |
'Rembrandt': 'models/rembrandt.pt' }
|
19 |
+
for model_file in os.listdir('models'):
|
20 |
+
path = 'models/' + model_file
|
21 |
+
if any([existing_path == path for existing_path in model_map.values()]):
|
22 |
+
continue
|
23 |
+
model_map[model_file] = path
|
24 |
+
|
25 |
|
26 |
ORIGINAL_SPACE_ID = 'baulab/Erasing-Concepts-In-Diffusion'
|
27 |
SPACE_ID = os.getenv('SPACE_ID')
|
|
|
38 |
self.training = False
|
39 |
self.generating = False
|
40 |
|
|
|
|
|
41 |
with gr.Blocks() as demo:
|
42 |
self.layout()
|
43 |
demo.queue(concurrency_count=5).launch()
|
|
|
69 |
label="Prompt",
|
70 |
info="Prompt to generate"
|
71 |
)
|
72 |
+
self.negative_prompt_input_infr = gr.Text(
|
73 |
+
label="Negative prompt"
|
74 |
+
)
|
75 |
|
76 |
with gr.Row():
|
77 |
|
|
|
86 |
label="Seed",
|
87 |
value=42
|
88 |
)
|
89 |
+
self.img_size_infr = gr.Slider(
|
90 |
+
label="Image size",
|
91 |
+
minimum=256,
|
92 |
+
maximum=1024,
|
93 |
+
value=512,
|
94 |
+
step=64
|
95 |
+
)
|
96 |
+
|
97 |
+
self.base_repo_id_or_path_input_infr = gr.Text(
|
98 |
+
label="Base model",
|
99 |
+
value="CompVis/stable-diffusion-v1-4",
|
100 |
+
info="Path or huggingface repo id of the base model that this edit was done against"
|
101 |
+
)
|
102 |
|
103 |
with gr.Column(scale=2):
|
104 |
|
|
|
129 |
|
130 |
with gr.Column(scale=3):
|
131 |
|
132 |
+
self.train_model_input = gr.Text(
|
133 |
+
label="Model to Edit",
|
134 |
+
value="CompVis/stable-diffusion-v1-4",
|
135 |
+
info="Path or huggingface repo id of the model to edit"
|
136 |
+
)
|
137 |
+
|
138 |
+
self.train_img_size_input = gr.Slider(
|
139 |
+
value=512,
|
140 |
+
step=64,
|
141 |
+
minimum=256,
|
142 |
+
maximum=1024,
|
143 |
+
label="Image Size",
|
144 |
+
info="Image size for training, should match the model's native image size"
|
145 |
+
)
|
146 |
+
|
147 |
self.prompt_input = gr.Text(
|
148 |
placeholder="Enter prompt...",
|
149 |
label="Prompt to Erase",
|
|
|
192 |
|
193 |
self.infr_button.click(self.inference, inputs = [
|
194 |
self.prompt_input_infr,
|
195 |
+
self.negative_prompt_input_infr,
|
196 |
self.seed_infr,
|
197 |
+
self.img_size_infr,
|
198 |
+
self.model_dropdown,
|
199 |
+
self.base_repo_id_or_path_input_infr
|
200 |
],
|
201 |
outputs=[
|
202 |
self.image_new,
|
|
|
204 |
]
|
205 |
)
|
206 |
self.train_button.click(self.train, inputs = [
|
207 |
+
self.train_model_input,
|
208 |
+
self.train_img_size_input,
|
209 |
self.prompt_input,
|
210 |
self.train_method_input,
|
211 |
self.neg_guidance_input,
|
|
|
215 |
outputs=[self.train_button, self.train_status, self.download, self.model_dropdown]
|
216 |
)
|
217 |
|
218 |
+
def train(self, repo_id_or_path, img_size, prompt, train_method, neg_guidance, iterations, lr, pbar = gr.Progress(track_tqdm=True)):
|
219 |
|
220 |
if self.training:
|
221 |
return [gr.update(interactive=True, value='Train'), gr.update(value='Someone else is training... Try again soon'), None, gr.update()]
|
|
|
241 |
|
242 |
self.training = True
|
243 |
|
244 |
+
train(repo_id_or_path, img_size, prompt, modules, frozen, iterations, neg_guidance, lr, save_path)
|
245 |
|
246 |
self.training = False
|
247 |
|
|
|
252 |
return [gr.update(interactive=True, value='Train'), gr.update(value='Done Training! \n Try your custom model in the "Test" tab'), save_path, gr.Dropdown.update(choices=list(model_map.keys()), value='Custom')]
|
253 |
|
254 |
|
255 |
+
def inference(self, prompt, negative_prompt, seed, img_size, model_name, base_repo_id_or_path, pbar = gr.Progress(track_tqdm=True)):
|
256 |
|
257 |
seed = seed or 42
|
|
|
258 |
generator = torch.manual_seed(seed)
|
|
|
259 |
model_path = model_map[model_name]
|
|
|
260 |
checkpoint = torch.load(model_path)
|
261 |
|
262 |
+
self.diffuser = StableDiffuser(scheduler='DDIM', repo_id_or_path=base_repo_id_or_path).to('cuda').eval().half()
|
263 |
finetuner = FineTunedModel.from_checkpoint(self.diffuser, checkpoint).eval().half()
|
|
|
264 |
torch.cuda.empty_cache()
|
265 |
|
266 |
images = self.diffuser(
|
267 |
prompt,
|
268 |
+
negative_prompt,
|
269 |
+
img_size=img_size,
|
270 |
n_steps=50,
|
271 |
generator=generator
|
272 |
)
|
|
|
282 |
|
283 |
images = self.diffuser(
|
284 |
prompt,
|
285 |
+
negative_prompt,
|
286 |
n_steps=50,
|
287 |
generator=generator
|
288 |
)
|
train.py
CHANGED
@@ -3,11 +3,11 @@ from finetuning import FineTunedModel
|
|
3 |
import torch
|
4 |
from tqdm import tqdm
|
5 |
|
6 |
-
def train(prompt, modules, freeze_modules, iterations, negative_guidance, lr, save_path):
|
7 |
|
8 |
nsteps = 50
|
9 |
|
10 |
-
diffuser = StableDiffuser(scheduler='DDIM').to('cuda')
|
11 |
diffuser.train()
|
12 |
|
13 |
finetuner = FineTunedModel(diffuser, modules, frozen_modules=freeze_modules)
|
@@ -28,17 +28,16 @@ def train(prompt, modules, freeze_modules, iterations, negative_guidance, lr, sa
|
|
28 |
|
29 |
torch.cuda.empty_cache()
|
30 |
|
|
|
|
|
31 |
for i in pbar:
|
32 |
-
|
33 |
with torch.no_grad():
|
34 |
-
|
35 |
diffuser.set_scheduler_timesteps(nsteps)
|
36 |
-
|
37 |
optimizer.zero_grad()
|
38 |
|
39 |
iteration = torch.randint(1, nsteps - 1, (1,)).item()
|
40 |
|
41 |
-
latents = diffuser.get_initial_latents(1,
|
42 |
|
43 |
with finetuner:
|
44 |
|
@@ -80,6 +79,8 @@ if __name__ == '__main__':
|
|
80 |
|
81 |
parser = argparse.ArgumentParser()
|
82 |
|
|
|
|
|
83 |
parser.add_argument('--prompt', required=True)
|
84 |
parser.add_argument('--modules', required=True)
|
85 |
parser.add_argument('--freeze_modules', nargs='+', required=True)
|
|
|
3 |
import torch
|
4 |
from tqdm import tqdm
|
5 |
|
6 |
+
def train(repo_id_or_path, img_size, prompt, modules, freeze_modules, iterations, negative_guidance, lr, save_path):
|
7 |
|
8 |
nsteps = 50
|
9 |
|
10 |
+
diffuser = StableDiffuser(scheduler='DDIM', repo_id_or_path=repo_id_or_path).to('cuda')
|
11 |
diffuser.train()
|
12 |
|
13 |
finetuner = FineTunedModel(diffuser, modules, frozen_modules=freeze_modules)
|
|
|
28 |
|
29 |
torch.cuda.empty_cache()
|
30 |
|
31 |
+
print(f"using img_size of {img_size}")
|
32 |
+
|
33 |
for i in pbar:
|
|
|
34 |
with torch.no_grad():
|
|
|
35 |
diffuser.set_scheduler_timesteps(nsteps)
|
|
|
36 |
optimizer.zero_grad()
|
37 |
|
38 |
iteration = torch.randint(1, nsteps - 1, (1,)).item()
|
39 |
|
40 |
+
latents = diffuser.get_initial_latents(1, img_size, 1)
|
41 |
|
42 |
with finetuner:
|
43 |
|
|
|
79 |
|
80 |
parser = argparse.ArgumentParser()
|
81 |
|
82 |
+
parser.add_argument("--repo_id_or_path", required=True)
|
83 |
+
parser.add_argument("--img_size", type=int, required=False, default=512)
|
84 |
parser.add_argument('--prompt', required=True)
|
85 |
parser.add_argument('--modules', required=True)
|
86 |
parser.add_argument('--freeze_modules', nargs='+', required=True)
|