potholedetector / app.py
dalybuilds's picture
Update app.py
b5fe3de verified
import gradio as gr
from transformers import DetrImageProcessor, DetrForObjectDetection
import torch
from PIL import Image, ImageDraw
# Model loading (same as before - with error handling)
try:
feature_extractor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", ignore_mismatched_sizes=True)
except Exception as e: # Error handling during model loading
print(f"Error loading model: {e}") # Log the error so you can see in HF logs
raise e # Re-raise for Space to report it
def predict(image):
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
target_sizes = torch.tensor([image.size[::-1]])
results = feature_extractor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.7)[0]
# Draw bounding boxes on the image
draw = ImageDraw.Draw(image) # Create a drawing object
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
box = [round(i) for i in box.tolist()] # Convert to integers for drawing
draw.rectangle(box, outline="red", width=2) # Outline
draw.text((box[0], box[1]), model.config.id2label[label.item()], fill="red") # Add a label
return image # Return the image with the bounding boxes drawn
# Gradio Interface (updated output type)
iface = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=gr.Image(type="pil", label="Detected Potholes (Image)"), # Updated
title="Pothole Detection POC",
description="Upload an image to detect potholes."
)
iface.launch()