Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import DetrImageProcessor, DetrForObjectDetection | |
import torch | |
from PIL import Image, ImageDraw | |
# Model loading (same as before - with error handling) | |
try: | |
feature_extractor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") | |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", ignore_mismatched_sizes=True) | |
except Exception as e: # Error handling during model loading | |
print(f"Error loading model: {e}") # Log the error so you can see in HF logs | |
raise e # Re-raise for Space to report it | |
def predict(image): | |
inputs = feature_extractor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
target_sizes = torch.tensor([image.size[::-1]]) | |
results = feature_extractor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.7)[0] | |
# Draw bounding boxes on the image | |
draw = ImageDraw.Draw(image) # Create a drawing object | |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
box = [round(i) for i in box.tolist()] # Convert to integers for drawing | |
draw.rectangle(box, outline="red", width=2) # Outline | |
draw.text((box[0], box[1]), model.config.id2label[label.item()], fill="red") # Add a label | |
return image # Return the image with the bounding boxes drawn | |
# Gradio Interface (updated output type) | |
iface = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Image(type="pil", label="Detected Potholes (Image)"), # Updated | |
title="Pothole Detection POC", | |
description="Upload an image to detect potholes." | |
) | |
iface.launch() |