Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,39 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
3 |
import torch
|
4 |
-
from PIL import Image
|
5 |
|
6 |
-
#
|
7 |
try:
|
8 |
-
feature_extractor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
9 |
-
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", ignore_mismatched_sizes=True)
|
10 |
-
except Exception as e:
|
11 |
-
print(f"Error loading model: {e}")
|
12 |
-
raise e
|
13 |
-
|
14 |
|
15 |
def predict(image):
|
16 |
-
|
17 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
18 |
outputs = model(**inputs)
|
19 |
|
20 |
-
|
21 |
target_sizes = torch.tensor([image.size[::-1]])
|
22 |
-
results = feature_extractor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.7)[0]
|
23 |
|
24 |
-
|
|
|
25 |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
26 |
-
box = [round(i
|
27 |
-
|
28 |
-
|
29 |
-
"score": round(score.item(), 3),
|
30 |
-
"label": model.config.id2label[label.item()]
|
31 |
-
})
|
32 |
-
|
33 |
-
return potholes
|
34 |
-
|
35 |
-
|
36 |
|
|
|
37 |
|
|
|
38 |
iface = gr.Interface(
|
39 |
fn=predict,
|
40 |
inputs=gr.Image(type="pil"),
|
41 |
-
outputs=gr.
|
42 |
title="Pothole Detection POC",
|
43 |
description="Upload an image to detect potholes."
|
44 |
)
|
45 |
|
46 |
-
|
47 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import DetrImageProcessor, DetrForObjectDetection
|
3 |
import torch
|
4 |
+
from PIL import Image, ImageDraw
|
5 |
|
6 |
+
# Model loading (same as before - with error handling)
|
7 |
try:
|
8 |
+
feature_extractor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
9 |
+
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", ignore_mismatched_sizes=True)
|
10 |
+
except Exception as e: # Error handling during model loading
|
11 |
+
print(f"Error loading model: {e}") # Log the error so you can see in HF logs
|
12 |
+
raise e # Re-raise for Space to report it
|
|
|
13 |
|
14 |
def predict(image):
|
|
|
15 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
16 |
outputs = model(**inputs)
|
17 |
|
|
|
18 |
target_sizes = torch.tensor([image.size[::-1]])
|
19 |
+
results = feature_extractor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.7)[0]
|
20 |
|
21 |
+
# Draw bounding boxes on the image
|
22 |
+
draw = ImageDraw.Draw(image) # Create a drawing object
|
23 |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
24 |
+
box = [round(i) for i in box.tolist()] # Convert to integers for drawing
|
25 |
+
draw.rectangle(box, outline="red", width=2) # Outline
|
26 |
+
draw.text((box[0], box[1]), model.config.id2label[label.item()], fill="red") # Add a label
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
return image # Return the image with the bounding boxes drawn
|
29 |
|
30 |
+
# Gradio Interface (updated output type)
|
31 |
iface = gr.Interface(
|
32 |
fn=predict,
|
33 |
inputs=gr.Image(type="pil"),
|
34 |
+
outputs=gr.Image(type="pil", label="Detected Potholes (Image)"), # Updated
|
35 |
title="Pothole Detection POC",
|
36 |
description="Upload an image to detect potholes."
|
37 |
)
|
38 |
|
|
|
39 |
iface.launch()
|