CrispChat / app.py
cstr's picture
Update app.py
82b8835 verified
raw
history blame
45.6 kB
import os
import gradio as gr
import requests
import json
import base64
import logging
import io
from typing import List, Dict, Any, Union, Tuple, Optional
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Gracefully import libraries with fallbacks
try:
from PIL import Image
except ImportError:
logger.warning("PIL not installed. Image processing will be limited.")
Image = None
try:
import PyPDF2
except ImportError:
logger.warning("PyPDF2 not installed. PDF processing will be limited.")
PyPDF2 = None
try:
import markdown
except ImportError:
logger.warning("Markdown not installed. Markdown processing will be limited.")
markdown = None
# API key
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "")
# Log API key status (masked for security)
if OPENROUTER_API_KEY:
masked_key = OPENROUTER_API_KEY[:4] + "..." + OPENROUTER_API_KEY[-4:] if len(OPENROUTER_API_KEY) > 8 else "***"
logger.info(f"Using API key: {masked_key}")
else:
logger.warning("No API key provided!")
# Keep the existing model lists
MODELS = [
# 1M+ Context Models
{"category": "1M+ Context", "models": [
("Google: Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free", 2000000),
("Google: Gemini 2.0 Flash Thinking Experimental 01-21", "google/gemini-2.0-flash-thinking-exp:free", 1048576),
("Google: Gemini Flash 2.0 Experimental", "google/gemini-2.0-flash-exp:free", 1048576),
("Google: Gemini Pro 2.5 Experimental", "google/gemini-2.5-pro-exp-03-25:free", 1000000),
("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 1000000),
]},
# 100K-1M Context Models
{"category": "100K+ Context", "models": [
("DeepSeek: DeepSeek R1 Zero", "deepseek/deepseek-r1-zero:free", 163840),
("DeepSeek: R1", "deepseek/deepseek-r1:free", 163840),
("DeepSeek: DeepSeek V3 Base", "deepseek/deepseek-v3-base:free", 131072),
("DeepSeek: DeepSeek V3 0324", "deepseek/deepseek-chat-v3-0324:free", 131072),
("Google: Gemma 3 4B", "google/gemma-3-4b-it:free", 131072),
("Google: Gemma 3 12B", "google/gemma-3-12b-it:free", 131072),
("Nous: DeepHermes 3 Llama 3 8B Preview", "nousresearch/deephermes-3-llama-3-8b-preview:free", 131072),
("Qwen: Qwen2.5 VL 72B Instruct", "qwen/qwen2.5-vl-72b-instruct:free", 131072),
("DeepSeek: DeepSeek V3", "deepseek/deepseek-chat:free", 131072),
("NVIDIA: Llama 3.1 Nemotron 70B Instruct", "nvidia/llama-3.1-nemotron-70b-instruct:free", 131072),
("Meta: Llama 3.2 1B Instruct", "meta-llama/llama-3.2-1b-instruct:free", 131072),
("Meta: Llama 3.2 11B Vision Instruct", "meta-llama/llama-3.2-11b-vision-instruct:free", 131072),
("Meta: Llama 3.1 8B Instruct", "meta-llama/llama-3.1-8b-instruct:free", 131072),
("Mistral: Mistral Nemo", "mistralai/mistral-nemo:free", 128000),
]},
# 64K-100K Context Models
{"category": "64K-100K Context", "models": [
("Mistral: Mistral Small 3.1 24B", "mistralai/mistral-small-3.1-24b-instruct:free", 96000),
("Google: Gemma 3 27B", "google/gemma-3-27b-it:free", 96000),
("Qwen: Qwen2.5 VL 3B Instruct", "qwen/qwen2.5-vl-3b-instruct:free", 64000),
("DeepSeek: R1 Distill Qwen 14B", "deepseek/deepseek-r1-distill-qwen-14b:free", 64000),
("Qwen: Qwen2.5-VL 7B Instruct", "qwen/qwen-2.5-vl-7b-instruct:free", 64000),
]},
# 32K-64K Context Models
{"category": "32K-64K Context", "models": [
("Google: LearnLM 1.5 Pro Experimental", "google/learnlm-1.5-pro-experimental:free", 40960),
("Qwen: QwQ 32B", "qwen/qwq-32b:free", 40000),
("Google: Gemini 2.0 Flash Thinking Experimental", "google/gemini-2.0-flash-thinking-exp-1219:free", 40000),
("Bytedance: UI-TARS 72B", "bytedance-research/ui-tars-72b:free", 32768),
("Qwerky 72b", "featherless/qwerky-72b:free", 32768),
("OlympicCoder 7B", "open-r1/olympiccoder-7b:free", 32768),
("OlympicCoder 32B", "open-r1/olympiccoder-32b:free", 32768),
("Google: Gemma 3 1B", "google/gemma-3-1b-it:free", 32768),
("Reka: Flash 3", "rekaai/reka-flash-3:free", 32768),
("Dolphin3.0 R1 Mistral 24B", "cognitivecomputations/dolphin3.0-r1-mistral-24b:free", 32768),
("Dolphin3.0 Mistral 24B", "cognitivecomputations/dolphin3.0-mistral-24b:free", 32768),
("Mistral: Mistral Small 3", "mistralai/mistral-small-24b-instruct-2501:free", 32768),
("Qwen2.5 Coder 32B Instruct", "qwen/qwen-2.5-coder-32b-instruct:free", 32768),
("Qwen2.5 72B Instruct", "qwen/qwen-2.5-72b-instruct:free", 32768),
]},
# 8K-32K Context Models
{"category": "8K-32K Context", "models": [
("Meta: Llama 3.2 3B Instruct", "meta-llama/llama-3.2-3b-instruct:free", 20000),
("Qwen: QwQ 32B Preview", "qwen/qwq-32b-preview:free", 16384),
("DeepSeek: R1 Distill Qwen 32B", "deepseek/deepseek-r1-distill-qwen-32b:free", 16000),
("Qwen: Qwen2.5 VL 32B Instruct", "qwen/qwen2.5-vl-32b-instruct:free", 8192),
("Moonshot AI: Moonlight 16B A3B Instruct", "moonshotai/moonlight-16b-a3b-instruct:free", 8192),
("DeepSeek: R1 Distill Llama 70B", "deepseek/deepseek-r1-distill-llama-70b:free", 8192),
("Qwen 2 7B Instruct", "qwen/qwen-2-7b-instruct:free", 8192),
("Google: Gemma 2 9B", "google/gemma-2-9b-it:free", 8192),
("Mistral: Mistral 7B Instruct", "mistralai/mistral-7b-instruct:free", 8192),
("Microsoft: Phi-3 Mini 128K Instruct", "microsoft/phi-3-mini-128k-instruct:free", 8192),
("Microsoft: Phi-3 Medium 128K Instruct", "microsoft/phi-3-medium-128k-instruct:free", 8192),
("Meta: Llama 3 8B Instruct", "meta-llama/llama-3-8b-instruct:free", 8192),
("OpenChat 3.5 7B", "openchat/openchat-7b:free", 8192),
("Meta: Llama 3.3 70B Instruct", "meta-llama/llama-3.3-70b-instruct:free", 8000),
]},
# <8K Context Models
{"category": "4K Context", "models": [
("AllenAI: Molmo 7B D", "allenai/molmo-7b-d:free", 4096),
("Rogue Rose 103B v0.2", "sophosympatheia/rogue-rose-103b-v0.2:free", 4096),
("Toppy M 7B", "undi95/toppy-m-7b:free", 4096),
("Hugging Face: Zephyr 7B", "huggingfaceh4/zephyr-7b-beta:free", 4096),
("MythoMax 13B", "gryphe/mythomax-l2-13b:free", 4096),
]},
# Vision-capable Models
{"category": "Vision Models", "models": [
("Google: Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free", 2000000),
("Google: Gemini 2.0 Flash Thinking Experimental 01-21", "google/gemini-2.0-flash-thinking-exp:free", 1048576),
("Google: Gemini Flash 2.0 Experimental", "google/gemini-2.0-flash-exp:free", 1048576),
("Google: Gemini Pro 2.5 Experimental", "google/gemini-2.5-pro-exp-03-25:free", 1000000),
("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 1000000),
("Google: Gemma 3 4B", "google/gemma-3-4b-it:free", 131072),
("Google: Gemma 3 12B", "google/gemma-3-12b-it:free", 131072),
("Qwen: Qwen2.5 VL 72B Instruct", "qwen/qwen2.5-vl-72b-instruct:free", 131072),
("Meta: Llama 3.2 11B Vision Instruct", "meta-llama/llama-3.2-11b-vision-instruct:free", 131072),
("Mistral: Mistral Small 3.1 24B", "mistralai/mistral-small-3.1-24b-instruct:free", 96000),
("Google: Gemma 3 27B", "google/gemma-3-27b-it:free", 96000),
("Qwen: Qwen2.5 VL 3B Instruct", "qwen/qwen2.5-vl-3b-instruct:free", 64000),
("Qwen: Qwen2.5-VL 7B Instruct", "qwen/qwen-2.5-vl-7b-instruct:free", 64000),
("Google: LearnLM 1.5 Pro Experimental", "google/learnlm-1.5-pro-experimental:free", 40960),
("Google: Gemini 2.0 Flash Thinking Experimental", "google/gemini-2.0-flash-thinking-exp-1219:free", 40000),
("Bytedance: UI-TARS 72B", "bytedance-research/ui-tars-72b:free", 32768),
("Google: Gemma 3 1B", "google/gemma-3-1b-it:free", 32768),
("Qwen: Qwen2.5 VL 32B Instruct", "qwen/qwen2.5-vl-32b-instruct:free", 8192),
("AllenAI: Molmo 7B D", "allenai/molmo-7b-d:free", 4096),
]},
]
# Flatten model list for easy searching
ALL_MODELS = []
for category in MODELS:
for model in category["models"]:
if model not in ALL_MODELS: # Avoid duplicates
ALL_MODELS.append(model)
# Helper functions moved to the top to avoid undefined references
def filter_models(search_term):
"""Filter models based on search term"""
if not search_term:
return [model[0] for model in ALL_MODELS], ALL_MODELS[0][0]
filtered_models = [model[0] for model in ALL_MODELS if search_term.lower() in model[0].lower()]
if filtered_models:
return filtered_models, filtered_models[0]
else:
return [model[0] for model in ALL_MODELS], ALL_MODELS[0][0]
def update_context_display(model_name):
"""Update context size display for the selected model"""
for model in ALL_MODELS:
if model[0] == model_name:
_, _, context_size = model
context_formatted = f"{context_size:,}"
return f"{context_formatted} tokens"
return "Unknown"
def update_model_info(model_name):
"""Generate HTML info display for the selected model"""
for model in ALL_MODELS:
if model[0] == model_name:
name, model_id, context_size = model
# Check if this is a vision model
is_vision_model = False
for cat in MODELS:
if cat["category"] == "Vision Models":
if any(m[0] == model_name for m in cat["models"]):
is_vision_model = True
break
vision_badge = '<span style="background-color: #4CAF50; color: white; padding: 3px 6px; border-radius: 3px; font-size: 0.8em; margin-left: 5px;">Vision</span>' if is_vision_model else ''
return f"""
<div class="model-info">
<h3>{name} {vision_badge}</h3>
<p><strong>Model ID:</strong> {model_id}</p>
<p><strong>Context Size:</strong> {context_size:,} tokens</p>
<p><strong>Provider:</strong> {model_id.split('/')[0]}</p>
{f'<p><strong>Features:</strong> Supports image understanding</p>' if is_vision_model else ''}
</div>
"""
return "<p>Model information not available</p>"
def update_category_models_ui(category):
"""Completely regenerate the models dropdown based on selected category"""
for cat in MODELS:
if cat["category"] == category:
model_names = [model[0] for model in cat["models"]]
if model_names:
# Return a completely new dropdown component
return gr.Dropdown(
choices=model_names,
value=model_names[0],
label="Models in Category",
allow_custom_value=True
)
# Return empty dropdown if no models found
return gr.Dropdown(
choices=[],
value=None,
label="Models in Category",
allow_custom_value=True
)
def encode_image_to_base64(image_path):
"""Encode an image file to base64 string"""
try:
if isinstance(image_path, str): # File path as string
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
file_extension = image_path.split('.')[-1].lower()
mime_type = f"image/{file_extension}"
if file_extension in ["jpg", "jpeg"]:
mime_type = "image/jpeg"
elif file_extension == "png":
mime_type = "image/png"
elif file_extension == "webp":
mime_type = "image/webp"
return f"data:{mime_type};base64,{encoded_string}"
elif hasattr(image_path, 'name'): # Handle Gradio file objects directly
with open(image_path.name, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
file_extension = image_path.name.split('.')[-1].lower()
mime_type = f"image/{file_extension}"
if file_extension in ["jpg", "jpeg"]:
mime_type = "image/jpeg"
elif file_extension == "png":
mime_type = "image/png"
elif file_extension == "webp":
mime_type = "image/webp"
return f"data:{mime_type};base64,{encoded_string}"
else: # Handle file object or other types
logger.error(f"Unsupported image type: {type(image_path)}")
return None
except Exception as e:
logger.error(f"Error encoding image: {str(e)}")
return None
def extract_text_from_file(file_path):
"""Extract text from various file types"""
try:
file_extension = file_path.split('.')[-1].lower()
if file_extension == 'pdf':
if PyPDF2 is not None:
text = ""
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
text += page.extract_text() + "\n\n"
return text
else:
return "PDF processing is not available (PyPDF2 not installed)"
elif file_extension == 'md':
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
elif file_extension == 'txt':
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
else:
return f"Unsupported file type: {file_extension}"
except Exception as e:
logger.error(f"Error extracting text from file: {str(e)}")
return f"Error processing file: {str(e)}"
def prepare_message_with_media(text, images=None, documents=None):
"""Prepare a message with text, images, and document content"""
# If no media, return text only
if not images and not documents:
return text
# Start with text content
if documents and len(documents) > 0:
# If there are documents, append their content to the text
document_texts = []
for doc in documents:
if doc is None:
continue
# Make sure to handle file objects properly
doc_path = doc.name if hasattr(doc, 'name') else doc
doc_text = extract_text_from_file(doc_path)
if doc_text:
document_texts.append(doc_text)
# Add document content to text
if document_texts:
if not text:
text = "Please analyze these documents:"
else:
text = f"{text}\n\nDocument content:\n\n"
text += "\n\n".join(document_texts)
# If no images, return text only
if not images:
return text
# If we have images, create a multimodal content array
content = [{"type": "text", "text": text}]
# Add images if any
if images:
# Check if images is a list of image paths or file objects
if isinstance(images, list):
for img in images:
if img is None:
continue
encoded_image = encode_image_to_base64(img)
if encoded_image:
content.append({
"type": "image_url",
"image_url": {"url": encoded_image}
})
else:
# For single image or Gallery component
logger.warning(f"Images is not a list: {type(images)}")
# Try to handle as single image
encoded_image = encode_image_to_base64(images)
if encoded_image:
content.append({
"type": "image_url",
"image_url": {"url": encoded_image}
})
return content
def format_to_message_dict(history):
"""Convert history to proper message format"""
messages = []
for pair in history:
if len(pair) == 2:
human, ai = pair
if human:
messages.append({"role": "user", "content": human})
if ai:
messages.append({"role": "assistant", "content": ai})
return messages
def process_uploaded_images(files):
"""Process uploaded image files"""
file_paths = []
for file in files:
if hasattr(file, 'name'):
file_paths.append(file.name)
return file_paths
def get_model_info(model_choice):
"""Get model ID and context size from model name"""
for name, model_id_value, ctx_size in ALL_MODELS:
if name == model_choice:
return model_id_value, ctx_size
return None, 0
def get_models_for_category(category):
"""Get model list for a specific category"""
for cat in MODELS:
if cat["category"] == category:
return [model[0] for model in cat["models"]]
return []
def call_openrouter_api(payload):
"""Make a call to OpenRouter API with error handling"""
try:
response = requests.post(
"https://openrouter.ai/api/v1/chat/completions",
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"HTTP-Referer": "https://huggingface.co/spaces/cstr/CrispChat"
},
json=payload,
timeout=180 # Longer timeout for document processing
)
return response
except requests.RequestException as e:
logger.error(f"API request error: {str(e)}")
raise e
def extract_ai_response(result):
"""Extract AI response from OpenRouter API result"""
try:
if "choices" in result and len(result["choices"]) > 0:
if "message" in result["choices"][0]:
# Handle reasoning field if available
message = result["choices"][0]["message"]
if message.get("reasoning") and not message.get("content"):
# Extract response from reasoning if there's no content
reasoning = message.get("reasoning")
# If reasoning contains the actual response, find it
lines = reasoning.strip().split('\n')
for line in lines:
if line and not line.startswith('I should') and not line.startswith('Let me'):
return line.strip()
# If no clear response found, return the first non-empty line
for line in lines:
if line.strip():
return line.strip()
return message.get("content", "")
elif "delta" in result["choices"][0]:
return result["choices"][0]["delta"].get("content", "")
logger.error(f"Unexpected response structure: {result}")
return "Error: Could not extract response from API result"
except Exception as e:
logger.error(f"Error extracting AI response: {str(e)}")
return f"Error: {str(e)}"
# streaming code:
def streaming_handler(response, chatbot, message_idx):
try:
# First add the user message if needed
if len(chatbot) == message_idx:
chatbot.append({"role": "user", "content": message})
chatbot.append({"role": "assistant", "content": ""})
for line in response.iter_lines():
if not line:
continue
line = line.decode('utf-8')
if not line.startswith('data: '):
continue
data = line[6:]
if data.strip() == '[DONE]':
break
try:
chunk = json.loads(data)
if "choices" in chunk and len(chunk["choices"]) > 0:
delta = chunk["choices"][0].get("delta", {})
if "content" in delta and delta["content"]:
# Update the last message content
chatbot[-1]["content"] += delta["content"]
yield chatbot
except json.JSONDecodeError:
logger.error(f"Failed to parse JSON from chunk: {data}")
except Exception as e:
logger.error(f"Error in streaming handler: {str(e)}")
# Add error message to the current response
if len(chatbot) > message_idx:
chatbot[-1]["content"] += f"\n\nError during streaming: {str(e)}"
yield chatbot
def ask_ai(message, history, model_choice, temperature, max_tokens, top_p,
frequency_penalty, presence_penalty, repetition_penalty, top_k,
min_p, seed, top_a, stream_output, response_format,
images, documents, reasoning_effort, system_message, transforms):
"""Redesigned AI query function with proper error handling for Gradio 4.44.1"""
# Validate input
if not message.strip() and not images and not documents:
return history
# Get model information
model_id, context_size = get_model_info(model_choice)
if not model_id:
logger.error(f"Model not found: {model_choice}")
history.append((message, f"Error: Model '{model_choice}' not found"))
return history
# Copy history to new list to avoid modifying the original
chat_history = list(history)
# Create messages from chat history
messages = format_to_message_dict(chat_history)
# Add system message if provided
if system_message and system_message.strip():
# Remove any existing system message
messages = [msg for msg in messages if msg.get("role") != "system"]
# Add new system message at the beginning
messages.insert(0, {"role": "system", "content": system_message.strip()})
# Prepare message with images and documents if any
content = prepare_message_with_media(message, images, documents)
# Add current message
messages.append({"role": "user", "content": content})
# Build the payload with all parameters
payload = {
"model": model_id,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
"presence_penalty": presence_penalty,
"stream": stream_output
}
# Add optional parameters if set
if repetition_penalty != 1.0:
payload["repetition_penalty"] = repetition_penalty
if top_k > 0:
payload["top_k"] = top_k
if min_p > 0:
payload["min_p"] = min_p
if seed > 0:
payload["seed"] = seed
if top_a > 0:
payload["top_a"] = top_a
# Add response format if JSON is requested
if response_format == "json_object":
payload["response_format"] = {"type": "json_object"}
# Add reasoning if selected
if reasoning_effort != "none":
payload["reasoning"] = {
"effort": reasoning_effort
}
# Add transforms if selected
if transforms:
payload["transforms"] = transforms
# Log the request
logger.info(f"Sending request to model: {model_id}")
logger.info(f"Request payload: {json.dumps(payload, default=str)}")
try:
# Call OpenRouter API
response = call_openrouter_api(payload)
logger.info(f"Response status: {response.status_code}")
# Handle streaming response
if stream_output and response.status_code == 200:
# Add empty response slot to history
chat_history.append([message, ""])
# Set up generator for streaming updates
def streaming_generator():
for updated_history in streaming_handler(response, chat_history, len(chat_history) - 1):
yield updated_history
return streaming_generator()
# Handle normal response
elif response.status_code == 200:
result = response.json()
logger.info(f"Response content: {result}")
# Extract AI response
ai_response = extract_ai_response(result)
# Log token usage if available
if "usage" in result:
logger.info(f"Token usage: {result['usage']}")
# Add response to history
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": ai_response})
return chat_history
# Handle error response
else:
error_message = f"Error: Status code {response.status_code}"
try:
response_data = response.json()
error_message += f"\n\nDetails: {json.dumps(response_data, indent=2)}"
except:
error_message += f"\n\nResponse: {response.text}"
logger.error(error_message)
chat_history.append([message, error_message])
return chat_history
except Exception as e:
error_message = f"Error: {str(e)}"
logger.error(f"Exception during API call: {error_message}")
chat_history.append([message, error_message])
return chat_history
def clear_chat():
"""Reset all inputs"""
return [], "", [], [], 0.7, 1000, 0.8, 0.0, 0.0, 1.0, 40, 0.1, 0, 0.0, False, "default", "none", "", []
def create_app():
"""Create the Gradio application with improved UI and response handling"""
with gr.Blocks(
title="CrispChat - AI Assistant",
css="""
.context-size {
font-size: 0.9em;
color: #666;
margin-left: 10px;
}
footer { display: none !important; }
.model-selection-row {
display: flex;
align-items: center;
}
.parameter-grid {
display: grid;
grid-template-columns: 1fr 1fr;
gap: 10px;
}
.vision-badge {
background-color: #4CAF50;
color: white;
padding: 3px 6px;
border-radius: 3px;
font-size: 0.8em;
margin-left: 5px;
}
"""
) as demo:
gr.Markdown("""
# CrispChat AI Assistant
Chat with various AI models from OpenRouter with support for images and documents.
""")
with gr.Row():
with gr.Column(scale=2):
# Chatbot interface - properly configured for Gradio 4.44.1
chatbot = gr.Chatbot(
height=500,
show_copy_button=True,
show_label=False,
avatar_images=(None, "https://upload.wikimedia.org/wikipedia/commons/0/04/ChatGPT_logo.svg"),
type="messages", # Explicitly set the type to messages
elem_id="chat-window" # Add elem_id for debugging
)
# Debug output for development
debug_output = gr.JSON(
label="Debug Output (Hidden in Production)",
visible=False
)
with gr.Row():
message = gr.Textbox(
placeholder="Type your message here...",
label="Message",
lines=2,
elem_id="message-input", # Add elem_id for debugging
scale=4
)
with gr.Row():
with gr.Column(scale=3):
submit_btn = gr.Button("Send", variant="primary", elem_id="send-btn")
with gr.Column(scale=1):
clear_btn = gr.Button("Clear Chat", variant="secondary")
with gr.Row():
# Image upload
with gr.Accordion("Upload Images (for vision models)", open=False):
images = gr.File(
label="Uploaded Images",
file_types=["image"],
file_count="multiple"
)
image_upload_btn = gr.UploadButton(
label="Upload Images",
file_types=["image"],
file_count="multiple"
)
# Document upload
with gr.Accordion("Upload Documents (PDF, MD, TXT)", open=False):
documents = gr.File(
label="Uploaded Documents",
file_types=[".pdf", ".md", ".txt"],
file_count="multiple"
)
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("### Model Selection")
with gr.Row(elem_classes="model-selection-row"):
model_search = gr.Textbox(
placeholder="Search models...",
label="",
show_label=False
)
with gr.Row(elem_classes="model-selection-row"):
model_choice = gr.Dropdown(
[model[0] for model in ALL_MODELS],
value=ALL_MODELS[0][0],
label="Model",
elem_id="model-choice",
elem_classes="model-choice",
allow_custom_value=True
)
context_display = gr.Textbox(
value=update_context_display(ALL_MODELS[0][0]),
label="Context",
interactive=False,
elem_classes="context-size"
)
# Model category selection
with gr.Accordion("Browse by Category", open=False):
model_categories = gr.Dropdown(
[category["category"] for category in MODELS],
label="Categories",
value=MODELS[0]["category"]
)
# Create a container for the category models dropdown
with gr.Column(visible=True, elem_id="category-models-container") as category_models_container:
# Create a hidden text component to store model choices as JSON
category_model_choices = gr.Text(visible=False)
# Create the dropdown with no initial choices
category_models = gr.Dropdown(
[],
label="Models in Category",
value=None,
elem_classes="category-models",
allow_custom_value=True
)
with gr.Accordion("Generation Parameters", open=False):
with gr.Group(elem_classes="parameter-grid"):
temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature"
)
max_tokens = gr.Slider(
minimum=100,
maximum=4000,
value=1000,
step=100,
label="Max Tokens"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.8,
step=0.1,
label="Top P"
)
frequency_penalty = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
)
presence_penalty = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Presence Penalty"
)
reasoning_effort = gr.Radio(
["none", "low", "medium", "high"],
value="none",
label="Reasoning Effort"
)
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
with gr.Column():
repetition_penalty = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
label="Repetition Penalty"
)
top_k = gr.Slider(
minimum=1,
maximum=100,
value=40,
step=1,
label="Top K"
)
min_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.1,
step=0.05,
label="Min P"
)
with gr.Column():
seed = gr.Number(
value=0,
label="Seed (0 for random)",
precision=0
)
top_a = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.0,
step=0.05,
label="Top A"
)
stream_output = gr.Checkbox(
label="Stream Output",
value=False
)
with gr.Row():
response_format = gr.Radio(
["default", "json_object"],
value="default",
label="Response Format"
)
gr.Markdown("""
* **json_object**: Forces the model to respond with valid JSON only.
* Only available on certain models - check model support on OpenRouter.
""")
# Custom instructing options
with gr.Accordion("Custom Instructions", open=False):
system_message = gr.Textbox(
placeholder="Enter a system message to guide the model's behavior...",
label="System Message",
lines=3
)
transforms = gr.CheckboxGroup(
["prompt_optimize", "prompt_distill", "prompt_compress"],
label="Prompt Transforms (OpenRouter specific)"
)
gr.Markdown("""
* **prompt_optimize**: Improve prompt for better responses.
* **prompt_distill**: Compress prompt to use fewer tokens without changing meaning.
* **prompt_compress**: Aggressively compress prompt to fit larger contexts.
""")
# Add a model information section
with gr.Accordion("About Selected Model", open=False):
model_info_display = gr.HTML(
value=update_model_info(ALL_MODELS[0][0])
)
# Add usage instructions
with gr.Accordion("Usage Instructions", open=False):
gr.Markdown("""
## Basic Usage
1. Type your message in the input box
2. Select a model from the dropdown
3. Click "Send" or press Enter
## Working with Files
- **Images**: Upload images to use with vision-capable models
- **Documents**: Upload PDF, Markdown, or text files to analyze their content
## Advanced Parameters
- **Temperature**: Controls randomness (higher = more creative, lower = more deterministic)
- **Max Tokens**: Maximum length of the response
- **Top P**: Nucleus sampling threshold (higher = consider more tokens)
- **Reasoning Effort**: Some models can show their reasoning process
## Tips
- For code generation, use models like Qwen Coder
- For visual tasks, choose vision-capable models
- For long context, check the context window size next to the model name
""")
# Add a footer with version info
footer_md = gr.Markdown("""
---
### CrispChat v1.1
Built with ❤️ using Gradio 4.44.1 and OpenRouter API | Context sizes shown next to model names
""")
# Define a test function for debugging
def test_chatbot(test_message):
"""Simple test function to verify chatbot updates work"""
logger.info(f"Test function called with: {test_message}")
return [[test_message, "This is a test response to verify the chatbot is working"]]
# Connect model search to dropdown filter
model_search.change(
fn=filter_models,
inputs=model_search,
outputs=[model_choice, model_choice]
)
# Update context display when model changes
model_choice.change(
fn=update_context_display,
inputs=model_choice,
outputs=context_display
)
# Update model info when model changes
model_choice.change(
fn=update_model_info,
inputs=model_choice,
outputs=model_info_display
)
# Update model list when category changes
model_categories.change(
fn=lambda cat: json.dumps(get_models_for_category(cat)),
inputs=model_categories,
outputs=category_model_choices
)
# Update main model choice when category model is selected
category_models.change(
fn=lambda x: x,
inputs=category_models,
outputs=model_choice
)
category_model_choices.change(
fn=None,
inputs=None,
outputs=None,
_js="""
function(choices_json) {
// Parse JSON string to array
const choices = JSON.parse(choices_json);
// Find the dropdown element
const dropdown = document.querySelector('.category-models select');
// Clear existing options
dropdown.innerHTML = '';
// Add new options
choices.forEach(model => {
const option = document.createElement('option');
option.value = model;
option.textContent = model;
dropdown.appendChild(option);
});
// Set the first option as selected if available
if (choices.length > 0) {
dropdown.value = choices[0];
// Update the main model dropdown
const mainDropdown = document.querySelector('.model-choice select');
mainDropdown.value = choices[0];
// Trigger change events
dropdown.dispatchEvent(new Event('change', { bubbles: true }));
mainDropdown.dispatchEvent(new Event('change', { bubbles: true }));
}
}
"""
)
# Function to initialize the category models dropdown
def init_category_models():
initial_category = MODELS[0]["category"]
initial_models = get_models_for_category(initial_category)
return json.dumps(initial_models)
# Set initial choices for category models dropdown
category_model_choices.value = init_category_models()
# Process uploaded images
image_upload_btn.upload(
fn=lambda files: files,
inputs=image_upload_btn,
outputs=images
)
# Set up events for the submit button
submit_btn.click(
fn=ask_ai,
inputs=[
message, chatbot, model_choice, temperature, max_tokens,
top_p, frequency_penalty, presence_penalty, repetition_penalty,
top_k, min_p, seed, top_a, stream_output, response_format,
images, documents, reasoning_effort, system_message, transforms
],
outputs=chatbot,
show_progress="minimal",
).then(
fn=lambda: "", # Clear message box after sending
inputs=None,
outputs=message
)
# Set up events for message submission (pressing Enter)
message.submit(
fn=ask_ai,
inputs=[
message, chatbot, model_choice, temperature, max_tokens,
top_p, frequency_penalty, presence_penalty, repetition_penalty,
top_k, min_p, seed, top_a, stream_output, response_format,
images, documents, reasoning_effort, system_message, transforms
],
outputs=chatbot,
show_progress="minimal",
).then(
fn=lambda: "", # Clear message box after sending
inputs=None,
outputs=message
)
# Set up events for the clear button
clear_btn.click(
fn=clear_chat,
inputs=[],
outputs=[
chatbot, message, images, documents, temperature,
max_tokens, top_p, frequency_penalty, presence_penalty,
repetition_penalty, top_k, min_p, seed, top_a, stream_output,
response_format, reasoning_effort, system_message, transforms
]
)
# Debug button (hidden in production)
debug_btn = gr.Button("Debug Chatbot", visible=False)
debug_btn.click(
fn=test_chatbot,
inputs=[message],
outputs=[chatbot]
)
# Enable debugging for key components
# gr.debug(chatbot)
return demo
# Launch the app
if __name__ == "__main__":
# Check API key before starting
if not OPENROUTER_API_KEY:
logger.warning("WARNING: OPENROUTER_API_KEY environment variable is not set")
print("WARNING: OpenRouter API key not found. Set OPENROUTER_API_KEY environment variable.")
demo = create_app()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
debug=True,
show_error=True
)