File size: 45,617 Bytes
a13c2bb
453c62c
 
1ca78b8
5e9023b
453c62c
 
a791178
5e9023b
 
 
 
c96734b
453c62c
9dba8e1
 
 
453c62c
 
9dba8e1
 
 
 
453c62c
 
9dba8e1
 
 
 
453c62c
 
9dba8e1
9918749
a13c2bb
1ca78b8
a791178
 
 
 
 
 
 
 
9918749
453c62c
 
9dba8e1
453c62c
9dba8e1
453c62c
9dba8e1
37f5ab3
5e9023b
453c62c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37f5ab3
5e9023b
453c62c
 
9dba8e1
453c62c
 
 
 
37f5ab3
5e9023b
453c62c
 
9dba8e1
453c62c
 
 
 
 
 
 
 
 
 
 
 
 
37f5ab3
5e9023b
453c62c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dba8e1
453c62c
 
 
 
37f5ab3
5fd37a0
453c62c
 
 
5fd37a0
453c62c
5fd37a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
453c62c
37f5ab3
a13c2bb
1ca78b8
37f5ab3
 
 
453c62c
 
 
37f5ab3
a791178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dacc767
 
a791178
 
 
2db2154
dacc767
 
 
 
 
 
 
 
 
 
 
 
 
 
81d1619
5e9023b
453c62c
5e9023b
 
 
 
 
 
a791178
5e9023b
9dba8e1
 
453c62c
 
5e9023b
3dc43a9
 
 
 
 
 
 
 
 
 
 
 
7050196
 
 
5e9023b
 
 
 
37f5ab3
453c62c
37f5ab3
 
 
 
453c62c
 
 
 
 
 
 
 
9dba8e1
453c62c
37f5ab3
 
453c62c
a791178
37f5ab3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e9023b
 
37f5ab3
 
 
 
 
 
 
3dc43a9
 
 
37f5ab3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
453c62c
5e9023b
37f5ab3
3dc43a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37f5ab3
 
3dc43a9
37f5ab3
 
5e9023b
 
 
a791178
 
 
 
 
 
 
 
 
 
 
 
7050196
3dc43a9
7050196
 
 
 
 
9dba8e1
a791178
 
 
 
 
 
 
82b8835
 
 
 
 
 
 
a791178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ee626f
a791178
 
6ee626f
 
 
 
 
a791178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ee626f
 
a791178
 
 
 
 
 
 
6ee626f
a791178
 
 
9dba8e1
 
 
a791178
 
9dba8e1
a791178
5e9023b
a791178
 
 
9dba8e1
a791178
 
 
 
 
37f5ab3
a791178
 
37f5ab3
9dba8e1
 
a791178
 
 
9dba8e1
5e9023b
9dba8e1
 
5e9023b
9dba8e1
 
32ae536
a791178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dba8e1
a791178
 
 
 
 
 
 
 
 
 
 
 
9dba8e1
 
a791178
9dba8e1
a791178
 
 
 
 
 
 
9dba8e1
a791178
9dba8e1
a791178
9dba8e1
a791178
 
 
 
 
 
 
 
 
 
 
6ee626f
 
a791178
 
 
9dba8e1
a791178
 
 
 
 
 
 
 
 
 
 
9dba8e1
a791178
 
 
 
9dba8e1
 
453c62c
9dba8e1
 
453c62c
a791178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
453c62c
a791178
453c62c
 
 
 
 
 
a791178
453c62c
 
 
 
a791178
6ee626f
a791178
 
 
 
 
 
 
453c62c
 
 
 
 
 
a791178
 
 
453c62c
 
 
 
a791178
453c62c
 
 
 
 
 
 
3dc43a9
 
 
 
453c62c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a791178
2db2154
82b8835
 
453c62c
82b8835
453c62c
 
 
 
 
 
 
 
 
7050196
453c62c
 
 
 
 
dacc767
 
82b8835
 
 
 
dacc767
82b8835
dacc767
82b8835
 
dacc767
 
453c62c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a791178
453c62c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a791178
 
453c62c
7050196
a791178
 
 
 
 
 
453c62c
 
 
7050196
823a14b
453c62c
 
 
 
 
7050196
 
 
 
 
 
 
 
 
453c62c
 
 
 
82b8835
7050196
82b8835
453c62c
 
 
 
823a14b
7050196
 
453c62c
82b8835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
453c62c
 
3dc43a9
7050196
 
453c62c
 
 
 
 
 
 
 
 
 
 
a791178
 
 
 
 
 
453c62c
 
 
 
 
 
 
 
 
 
 
a791178
 
 
 
 
 
453c62c
 
 
 
 
 
 
 
 
 
 
 
 
 
a791178
 
 
 
 
 
 
 
 
6ee626f
a791178
453c62c
9dba8e1
82b8835
 
 
453c62c
c96734b
a791178
 
 
 
 
453c62c
a791178
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
import os
import gradio as gr
import requests
import json
import base64
import logging
import io
from typing import List, Dict, Any, Union, Tuple, Optional

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Gracefully import libraries with fallbacks
try:
    from PIL import Image
except ImportError:
    logger.warning("PIL not installed. Image processing will be limited.")
    Image = None

try:
    import PyPDF2
except ImportError:
    logger.warning("PyPDF2 not installed. PDF processing will be limited.")
    PyPDF2 = None

try:
    import markdown
except ImportError:
    logger.warning("Markdown not installed. Markdown processing will be limited.")
    markdown = None

# API key
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "")

# Log API key status (masked for security)
if OPENROUTER_API_KEY:
    masked_key = OPENROUTER_API_KEY[:4] + "..." + OPENROUTER_API_KEY[-4:] if len(OPENROUTER_API_KEY) > 8 else "***"
    logger.info(f"Using API key: {masked_key}")
else:
    logger.warning("No API key provided!")

# Keep the existing model lists
MODELS = [
    # 1M+ Context Models
    {"category": "1M+ Context", "models": [
        ("Google: Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free", 2000000),
        ("Google: Gemini 2.0 Flash Thinking Experimental 01-21", "google/gemini-2.0-flash-thinking-exp:free", 1048576),
        ("Google: Gemini Flash 2.0 Experimental", "google/gemini-2.0-flash-exp:free", 1048576),
        ("Google: Gemini Pro 2.5 Experimental", "google/gemini-2.5-pro-exp-03-25:free", 1000000),
        ("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 1000000),
    ]},
    
    # 100K-1M Context Models
    {"category": "100K+ Context", "models": [
        ("DeepSeek: DeepSeek R1 Zero", "deepseek/deepseek-r1-zero:free", 163840),
        ("DeepSeek: R1", "deepseek/deepseek-r1:free", 163840),
        ("DeepSeek: DeepSeek V3 Base", "deepseek/deepseek-v3-base:free", 131072),
        ("DeepSeek: DeepSeek V3 0324", "deepseek/deepseek-chat-v3-0324:free", 131072),
        ("Google: Gemma 3 4B", "google/gemma-3-4b-it:free", 131072),
        ("Google: Gemma 3 12B", "google/gemma-3-12b-it:free", 131072),
        ("Nous: DeepHermes 3 Llama 3 8B Preview", "nousresearch/deephermes-3-llama-3-8b-preview:free", 131072),
        ("Qwen: Qwen2.5 VL 72B Instruct", "qwen/qwen2.5-vl-72b-instruct:free", 131072),
        ("DeepSeek: DeepSeek V3", "deepseek/deepseek-chat:free", 131072),
        ("NVIDIA: Llama 3.1 Nemotron 70B Instruct", "nvidia/llama-3.1-nemotron-70b-instruct:free", 131072),
        ("Meta: Llama 3.2 1B Instruct", "meta-llama/llama-3.2-1b-instruct:free", 131072),
        ("Meta: Llama 3.2 11B Vision Instruct", "meta-llama/llama-3.2-11b-vision-instruct:free", 131072),
        ("Meta: Llama 3.1 8B Instruct", "meta-llama/llama-3.1-8b-instruct:free", 131072),
        ("Mistral: Mistral Nemo", "mistralai/mistral-nemo:free", 128000),
    ]},
    
    # 64K-100K Context Models
    {"category": "64K-100K Context", "models": [
        ("Mistral: Mistral Small 3.1 24B", "mistralai/mistral-small-3.1-24b-instruct:free", 96000),
        ("Google: Gemma 3 27B", "google/gemma-3-27b-it:free", 96000),
        ("Qwen: Qwen2.5 VL 3B Instruct", "qwen/qwen2.5-vl-3b-instruct:free", 64000),
        ("DeepSeek: R1 Distill Qwen 14B", "deepseek/deepseek-r1-distill-qwen-14b:free", 64000),
        ("Qwen: Qwen2.5-VL 7B Instruct", "qwen/qwen-2.5-vl-7b-instruct:free", 64000),
    ]},
    
    # 32K-64K Context Models
    {"category": "32K-64K Context", "models": [
        ("Google: LearnLM 1.5 Pro Experimental", "google/learnlm-1.5-pro-experimental:free", 40960),
        ("Qwen: QwQ 32B", "qwen/qwq-32b:free", 40000),
        ("Google: Gemini 2.0 Flash Thinking Experimental", "google/gemini-2.0-flash-thinking-exp-1219:free", 40000),
        ("Bytedance: UI-TARS 72B", "bytedance-research/ui-tars-72b:free", 32768),
        ("Qwerky 72b", "featherless/qwerky-72b:free", 32768),
        ("OlympicCoder 7B", "open-r1/olympiccoder-7b:free", 32768),
        ("OlympicCoder 32B", "open-r1/olympiccoder-32b:free", 32768),
        ("Google: Gemma 3 1B", "google/gemma-3-1b-it:free", 32768),
        ("Reka: Flash 3", "rekaai/reka-flash-3:free", 32768),
        ("Dolphin3.0 R1 Mistral 24B", "cognitivecomputations/dolphin3.0-r1-mistral-24b:free", 32768),
        ("Dolphin3.0 Mistral 24B", "cognitivecomputations/dolphin3.0-mistral-24b:free", 32768),
        ("Mistral: Mistral Small 3", "mistralai/mistral-small-24b-instruct-2501:free", 32768),
        ("Qwen2.5 Coder 32B Instruct", "qwen/qwen-2.5-coder-32b-instruct:free", 32768),
        ("Qwen2.5 72B Instruct", "qwen/qwen-2.5-72b-instruct:free", 32768),
    ]},
    
    # 8K-32K Context Models
    {"category": "8K-32K Context", "models": [
        ("Meta: Llama 3.2 3B Instruct", "meta-llama/llama-3.2-3b-instruct:free", 20000),
        ("Qwen: QwQ 32B Preview", "qwen/qwq-32b-preview:free", 16384),
        ("DeepSeek: R1 Distill Qwen 32B", "deepseek/deepseek-r1-distill-qwen-32b:free", 16000),
        ("Qwen: Qwen2.5 VL 32B Instruct", "qwen/qwen2.5-vl-32b-instruct:free", 8192),
        ("Moonshot AI: Moonlight 16B A3B Instruct", "moonshotai/moonlight-16b-a3b-instruct:free", 8192),
        ("DeepSeek: R1 Distill Llama 70B", "deepseek/deepseek-r1-distill-llama-70b:free", 8192),
        ("Qwen 2 7B Instruct", "qwen/qwen-2-7b-instruct:free", 8192),
        ("Google: Gemma 2 9B", "google/gemma-2-9b-it:free", 8192),
        ("Mistral: Mistral 7B Instruct", "mistralai/mistral-7b-instruct:free", 8192),
        ("Microsoft: Phi-3 Mini 128K Instruct", "microsoft/phi-3-mini-128k-instruct:free", 8192),
        ("Microsoft: Phi-3 Medium 128K Instruct", "microsoft/phi-3-medium-128k-instruct:free", 8192),
        ("Meta: Llama 3 8B Instruct", "meta-llama/llama-3-8b-instruct:free", 8192),
        ("OpenChat 3.5 7B", "openchat/openchat-7b:free", 8192),
        ("Meta: Llama 3.3 70B Instruct", "meta-llama/llama-3.3-70b-instruct:free", 8000),
    ]},
    
    # <8K Context Models
    {"category": "4K Context", "models": [
        ("AllenAI: Molmo 7B D", "allenai/molmo-7b-d:free", 4096),
        ("Rogue Rose 103B v0.2", "sophosympatheia/rogue-rose-103b-v0.2:free", 4096),
        ("Toppy M 7B", "undi95/toppy-m-7b:free", 4096),
        ("Hugging Face: Zephyr 7B", "huggingfaceh4/zephyr-7b-beta:free", 4096),
        ("MythoMax 13B", "gryphe/mythomax-l2-13b:free", 4096),
    ]},

    # Vision-capable Models
    {"category": "Vision Models", "models": [
        ("Google: Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free", 2000000),
        ("Google: Gemini 2.0 Flash Thinking Experimental 01-21", "google/gemini-2.0-flash-thinking-exp:free", 1048576),
        ("Google: Gemini Flash 2.0 Experimental", "google/gemini-2.0-flash-exp:free", 1048576),
        ("Google: Gemini Pro 2.5 Experimental", "google/gemini-2.5-pro-exp-03-25:free", 1000000),
        ("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 1000000),
        ("Google: Gemma 3 4B", "google/gemma-3-4b-it:free", 131072),
        ("Google: Gemma 3 12B", "google/gemma-3-12b-it:free", 131072),
        ("Qwen: Qwen2.5 VL 72B Instruct", "qwen/qwen2.5-vl-72b-instruct:free", 131072),
        ("Meta: Llama 3.2 11B Vision Instruct", "meta-llama/llama-3.2-11b-vision-instruct:free", 131072),
        ("Mistral: Mistral Small 3.1 24B", "mistralai/mistral-small-3.1-24b-instruct:free", 96000),
        ("Google: Gemma 3 27B", "google/gemma-3-27b-it:free", 96000),
        ("Qwen: Qwen2.5 VL 3B Instruct", "qwen/qwen2.5-vl-3b-instruct:free", 64000),
        ("Qwen: Qwen2.5-VL 7B Instruct", "qwen/qwen-2.5-vl-7b-instruct:free", 64000),
        ("Google: LearnLM 1.5 Pro Experimental", "google/learnlm-1.5-pro-experimental:free", 40960),
        ("Google: Gemini 2.0 Flash Thinking Experimental", "google/gemini-2.0-flash-thinking-exp-1219:free", 40000),
        ("Bytedance: UI-TARS 72B", "bytedance-research/ui-tars-72b:free", 32768),
        ("Google: Gemma 3 1B", "google/gemma-3-1b-it:free", 32768),
        ("Qwen: Qwen2.5 VL 32B Instruct", "qwen/qwen2.5-vl-32b-instruct:free", 8192),
        ("AllenAI: Molmo 7B D", "allenai/molmo-7b-d:free", 4096),
    ]},
]

# Flatten model list for easy searching
ALL_MODELS = []
for category in MODELS:
    for model in category["models"]:
        if model not in ALL_MODELS:  # Avoid duplicates
            ALL_MODELS.append(model)

# Helper functions moved to the top to avoid undefined references
def filter_models(search_term):
    """Filter models based on search term"""
    if not search_term:
        return [model[0] for model in ALL_MODELS], ALL_MODELS[0][0]
    
    filtered_models = [model[0] for model in ALL_MODELS if search_term.lower() in model[0].lower()]
    
    if filtered_models:
        return filtered_models, filtered_models[0]
    else:
        return [model[0] for model in ALL_MODELS], ALL_MODELS[0][0]

def update_context_display(model_name):
    """Update context size display for the selected model"""
    for model in ALL_MODELS:
        if model[0] == model_name:
            _, _, context_size = model
            context_formatted = f"{context_size:,}"
            return f"{context_formatted} tokens"
    return "Unknown"

def update_model_info(model_name):
    """Generate HTML info display for the selected model"""
    for model in ALL_MODELS:
        if model[0] == model_name:
            name, model_id, context_size = model
            
            # Check if this is a vision model
            is_vision_model = False
            for cat in MODELS:
                if cat["category"] == "Vision Models":
                    if any(m[0] == model_name for m in cat["models"]):
                        is_vision_model = True
                        break
            
            vision_badge = '<span style="background-color: #4CAF50; color: white; padding: 3px 6px; border-radius: 3px; font-size: 0.8em; margin-left: 5px;">Vision</span>' if is_vision_model else ''
            
            return f"""
            <div class="model-info">
                <h3>{name} {vision_badge}</h3>
                <p><strong>Model ID:</strong> {model_id}</p>
                <p><strong>Context Size:</strong> {context_size:,} tokens</p>
                <p><strong>Provider:</strong> {model_id.split('/')[0]}</p>
                {f'<p><strong>Features:</strong> Supports image understanding</p>' if is_vision_model else ''}
            </div>
            """
    return "<p>Model information not available</p>"

def update_category_models_ui(category):
    """Completely regenerate the models dropdown based on selected category"""
    for cat in MODELS:
        if cat["category"] == category:
            model_names = [model[0] for model in cat["models"]]
            if model_names:
                # Return a completely new dropdown component
                return gr.Dropdown(
                    choices=model_names,
                    value=model_names[0],
                    label="Models in Category",
                    allow_custom_value=True
                )
    # Return empty dropdown if no models found
    return gr.Dropdown(
        choices=[],
        value=None,
        label="Models in Category",
        allow_custom_value=True
    )

def encode_image_to_base64(image_path):
    """Encode an image file to base64 string"""
    try:
        if isinstance(image_path, str):  # File path as string
            with open(image_path, "rb") as image_file:
                encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
                file_extension = image_path.split('.')[-1].lower()
                mime_type = f"image/{file_extension}"
                if file_extension in ["jpg", "jpeg"]:
                    mime_type = "image/jpeg"
                elif file_extension == "png":
                    mime_type = "image/png"
                elif file_extension == "webp":
                    mime_type = "image/webp"
                return f"data:{mime_type};base64,{encoded_string}"
        elif hasattr(image_path, 'name'):  # Handle Gradio file objects directly
            with open(image_path.name, "rb") as image_file:
                encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
                file_extension = image_path.name.split('.')[-1].lower()
                mime_type = f"image/{file_extension}"
                if file_extension in ["jpg", "jpeg"]:
                    mime_type = "image/jpeg"
                elif file_extension == "png":
                    mime_type = "image/png"
                elif file_extension == "webp":
                    mime_type = "image/webp"
                return f"data:{mime_type};base64,{encoded_string}"
        else:  # Handle file object or other types
            logger.error(f"Unsupported image type: {type(image_path)}")
            return None
    except Exception as e:
        logger.error(f"Error encoding image: {str(e)}")
        return None

def extract_text_from_file(file_path):
    """Extract text from various file types"""
    try:
        file_extension = file_path.split('.')[-1].lower()
        
        if file_extension == 'pdf':
            if PyPDF2 is not None:
                text = ""
                with open(file_path, 'rb') as file:
                    pdf_reader = PyPDF2.PdfReader(file)
                    for page_num in range(len(pdf_reader.pages)):
                        page = pdf_reader.pages[page_num]
                        text += page.extract_text() + "\n\n"
                return text
            else:
                return "PDF processing is not available (PyPDF2 not installed)"
        
        elif file_extension == 'md':
            with open(file_path, 'r', encoding='utf-8') as file:
                return file.read()
        
        elif file_extension == 'txt':
            with open(file_path, 'r', encoding='utf-8') as file:
                return file.read()
                
        else:
            return f"Unsupported file type: {file_extension}"
            
    except Exception as e:
        logger.error(f"Error extracting text from file: {str(e)}")
        return f"Error processing file: {str(e)}"

def prepare_message_with_media(text, images=None, documents=None):
    """Prepare a message with text, images, and document content"""
    # If no media, return text only
    if not images and not documents:
        return text
    
    # Start with text content
    if documents and len(documents) > 0:
        # If there are documents, append their content to the text
        document_texts = []
        for doc in documents:
            if doc is None:
                continue
            # Make sure to handle file objects properly
            doc_path = doc.name if hasattr(doc, 'name') else doc
            doc_text = extract_text_from_file(doc_path)
            if doc_text:
                document_texts.append(doc_text)
        
        # Add document content to text
        if document_texts:
            if not text:
                text = "Please analyze these documents:"
            else:
                text = f"{text}\n\nDocument content:\n\n"
            
            text += "\n\n".join(document_texts)
            
        # If no images, return text only
        if not images:
            return text
    
    # If we have images, create a multimodal content array
    content = [{"type": "text", "text": text}]
    
    # Add images if any
    if images:
        # Check if images is a list of image paths or file objects
        if isinstance(images, list):
            for img in images:
                if img is None:
                    continue
                
                encoded_image = encode_image_to_base64(img)
                if encoded_image:
                    content.append({
                        "type": "image_url",
                        "image_url": {"url": encoded_image}
                    })
        else:
            # For single image or Gallery component
            logger.warning(f"Images is not a list: {type(images)}")
            # Try to handle as single image
            encoded_image = encode_image_to_base64(images)
            if encoded_image:
                content.append({
                    "type": "image_url", 
                    "image_url": {"url": encoded_image}
                })
    
    return content

def format_to_message_dict(history):
    """Convert history to proper message format"""
    messages = []
    for pair in history:
        if len(pair) == 2:
            human, ai = pair
            if human:
                messages.append({"role": "user", "content": human})
            if ai:
                messages.append({"role": "assistant", "content": ai})
    return messages

def process_uploaded_images(files):
    """Process uploaded image files"""
    file_paths = []
    for file in files:
        if hasattr(file, 'name'):
            file_paths.append(file.name)
    return file_paths

def get_model_info(model_choice):
    """Get model ID and context size from model name"""
    for name, model_id_value, ctx_size in ALL_MODELS:
        if name == model_choice:
            return model_id_value, ctx_size
    return None, 0

def get_models_for_category(category):
    """Get model list for a specific category"""
    for cat in MODELS:
        if cat["category"] == category:
            return [model[0] for model in cat["models"]]
    return []

def call_openrouter_api(payload):
    """Make a call to OpenRouter API with error handling"""
    try:
        response = requests.post(
            "https://openrouter.ai/api/v1/chat/completions",
            headers={
                "Content-Type": "application/json",
                "Authorization": f"Bearer {OPENROUTER_API_KEY}",
                "HTTP-Referer": "https://huggingface.co/spaces/cstr/CrispChat"
            },
            json=payload,
            timeout=180  # Longer timeout for document processing
        )
        return response
    except requests.RequestException as e:
        logger.error(f"API request error: {str(e)}")
        raise e

def extract_ai_response(result):
    """Extract AI response from OpenRouter API result"""
    try:
        if "choices" in result and len(result["choices"]) > 0:
            if "message" in result["choices"][0]:
                # Handle reasoning field if available
                message = result["choices"][0]["message"]
                if message.get("reasoning") and not message.get("content"):
                    # Extract response from reasoning if there's no content
                    reasoning = message.get("reasoning")
                    # If reasoning contains the actual response, find it
                    lines = reasoning.strip().split('\n')
                    for line in lines:
                        if line and not line.startswith('I should') and not line.startswith('Let me'):
                            return line.strip()
                    # If no clear response found, return the first non-empty line
                    for line in lines:
                        if line.strip():
                            return line.strip()
                return message.get("content", "")
            elif "delta" in result["choices"][0]:
                return result["choices"][0]["delta"].get("content", "")
        
        logger.error(f"Unexpected response structure: {result}")
        return "Error: Could not extract response from API result"
    except Exception as e:
        logger.error(f"Error extracting AI response: {str(e)}")
        return f"Error: {str(e)}"

# streaming code:
def streaming_handler(response, chatbot, message_idx):
    try:
        # First add the user message if needed
        if len(chatbot) == message_idx:
            chatbot.append({"role": "user", "content": message})
            chatbot.append({"role": "assistant", "content": ""})
            
        for line in response.iter_lines():
            if not line:
                continue
                
            line = line.decode('utf-8')
            if not line.startswith('data: '):
                continue
                
            data = line[6:]
            if data.strip() == '[DONE]':
                break
                
            try:
                chunk = json.loads(data)
                if "choices" in chunk and len(chunk["choices"]) > 0:
                    delta = chunk["choices"][0].get("delta", {})
                    if "content" in delta and delta["content"]:
                        # Update the last message content
                        chatbot[-1]["content"] += delta["content"]
                        yield chatbot
            except json.JSONDecodeError:
                logger.error(f"Failed to parse JSON from chunk: {data}")
    except Exception as e:
        logger.error(f"Error in streaming handler: {str(e)}")
        # Add error message to the current response
        if len(chatbot) > message_idx:
            chatbot[-1]["content"] += f"\n\nError during streaming: {str(e)}"
            yield chatbot

def ask_ai(message, history, model_choice, temperature, max_tokens, top_p, 
           frequency_penalty, presence_penalty, repetition_penalty, top_k, 
           min_p, seed, top_a, stream_output, response_format, 
           images, documents, reasoning_effort, system_message, transforms):
    """Redesigned AI query function with proper error handling for Gradio 4.44.1"""
    # Validate input
    if not message.strip() and not images and not documents:
        return history
    
    # Get model information
    model_id, context_size = get_model_info(model_choice)
    if not model_id:
        logger.error(f"Model not found: {model_choice}")
        history.append((message, f"Error: Model '{model_choice}' not found"))
        return history
    
    # Copy history to new list to avoid modifying the original
    chat_history = list(history)
    
    # Create messages from chat history
    messages = format_to_message_dict(chat_history)
    
    # Add system message if provided
    if system_message and system_message.strip():
        # Remove any existing system message
        messages = [msg for msg in messages if msg.get("role") != "system"]
        # Add new system message at the beginning
        messages.insert(0, {"role": "system", "content": system_message.strip()})
    
    # Prepare message with images and documents if any
    content = prepare_message_with_media(message, images, documents)
    
    # Add current message
    messages.append({"role": "user", "content": content})
    
    # Build the payload with all parameters
    payload = {
        "model": model_id,
        "messages": messages,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "top_p": top_p,
        "frequency_penalty": frequency_penalty,
        "presence_penalty": presence_penalty,
        "stream": stream_output
    }
    
    # Add optional parameters if set
    if repetition_penalty != 1.0:
        payload["repetition_penalty"] = repetition_penalty
    
    if top_k > 0:
        payload["top_k"] = top_k
    
    if min_p > 0:
        payload["min_p"] = min_p
    
    if seed > 0:
        payload["seed"] = seed
    
    if top_a > 0:
        payload["top_a"] = top_a
    
    # Add response format if JSON is requested
    if response_format == "json_object":
        payload["response_format"] = {"type": "json_object"}
    
    # Add reasoning if selected
    if reasoning_effort != "none":
        payload["reasoning"] = {
            "effort": reasoning_effort
        }
    
    # Add transforms if selected
    if transforms:
        payload["transforms"] = transforms
    
    # Log the request
    logger.info(f"Sending request to model: {model_id}")
    logger.info(f"Request payload: {json.dumps(payload, default=str)}")
    
    try:
        # Call OpenRouter API
        response = call_openrouter_api(payload)
        logger.info(f"Response status: {response.status_code}")
        
        # Handle streaming response
        if stream_output and response.status_code == 200:
            # Add empty response slot to history
            chat_history.append([message, ""])
            
            # Set up generator for streaming updates
            def streaming_generator():
                for updated_history in streaming_handler(response, chat_history, len(chat_history) - 1):
                    yield updated_history
            
            return streaming_generator()
        
        # Handle normal response
        elif response.status_code == 200:
            result = response.json()
            logger.info(f"Response content: {result}")
            
            # Extract AI response
            ai_response = extract_ai_response(result)
            
            # Log token usage if available
            if "usage" in result:
                logger.info(f"Token usage: {result['usage']}")
            
            # Add response to history
            chat_history.append({"role": "user", "content": message})
            chat_history.append({"role": "assistant", "content": ai_response})
            return chat_history
        
        # Handle error response
        else:
            error_message = f"Error: Status code {response.status_code}"
            try:
                response_data = response.json()
                error_message += f"\n\nDetails: {json.dumps(response_data, indent=2)}"
            except:
                error_message += f"\n\nResponse: {response.text}"
            
            logger.error(error_message)
            chat_history.append([message, error_message])
            return chat_history
            
    except Exception as e:
        error_message = f"Error: {str(e)}"
        logger.error(f"Exception during API call: {error_message}")
        chat_history.append([message, error_message])
        return chat_history

def clear_chat():
    """Reset all inputs"""
    return [], "", [], [], 0.7, 1000, 0.8, 0.0, 0.0, 1.0, 40, 0.1, 0, 0.0, False, "default", "none", "", []

def create_app():
    """Create the Gradio application with improved UI and response handling"""
    with gr.Blocks(
        title="CrispChat - AI Assistant",
        css="""
            .context-size { 
                font-size: 0.9em;
                color: #666;
                margin-left: 10px;
            }
            footer { display: none !important; }
            .model-selection-row {
                display: flex;
                align-items: center;
            }
            .parameter-grid {
                display: grid;
                grid-template-columns: 1fr 1fr;
                gap: 10px;
            }
            .vision-badge {
                background-color: #4CAF50;
                color: white;
                padding: 3px 6px;
                border-radius: 3px;
                font-size: 0.8em;
                margin-left: 5px;
            }
        """
    ) as demo:
        gr.Markdown("""
        # CrispChat AI Assistant
        
        Chat with various AI models from OpenRouter with support for images and documents.
        """)
        
        with gr.Row():
            with gr.Column(scale=2):
                # Chatbot interface - properly configured for Gradio 4.44.1
                chatbot = gr.Chatbot(
                    height=500, 
                    show_copy_button=True, 
                    show_label=False,
                    avatar_images=(None, "https://upload.wikimedia.org/wikipedia/commons/0/04/ChatGPT_logo.svg"),
                    type="messages",  # Explicitly set the type to messages
                    elem_id="chat-window"  # Add elem_id for debugging
                )
                
                # Debug output for development
                debug_output = gr.JSON(
                    label="Debug Output (Hidden in Production)",
                    visible=False
                )
                
                with gr.Row():
                    message = gr.Textbox(
                        placeholder="Type your message here...",
                        label="Message",
                        lines=2,
                        elem_id="message-input",  # Add elem_id for debugging
                        scale=4
                    )
                
                with gr.Row():
                    with gr.Column(scale=3):
                        submit_btn = gr.Button("Send", variant="primary", elem_id="send-btn")
                    
                    with gr.Column(scale=1):
                        clear_btn = gr.Button("Clear Chat", variant="secondary")
                
                with gr.Row():
                    # Image upload
                    with gr.Accordion("Upload Images (for vision models)", open=False):
                        images = gr.File(
                            label="Uploaded Images",
                            file_types=["image"],
                            file_count="multiple"
                        )
                        
                        image_upload_btn = gr.UploadButton(
                            label="Upload Images",
                            file_types=["image"],
                            file_count="multiple"
                        )
                    
                    # Document upload
                    with gr.Accordion("Upload Documents (PDF, MD, TXT)", open=False):
                        documents = gr.File(
                            label="Uploaded Documents",
                            file_types=[".pdf", ".md", ".txt"], 
                            file_count="multiple"
                        )
            
            with gr.Column(scale=1):
                with gr.Group():
                    gr.Markdown("### Model Selection")
                    
                    with gr.Row(elem_classes="model-selection-row"):
                        model_search = gr.Textbox(
                            placeholder="Search models...",
                            label="",
                            show_label=False
                        )
                    
                    with gr.Row(elem_classes="model-selection-row"):
                        model_choice = gr.Dropdown(
                            [model[0] for model in ALL_MODELS],
                            value=ALL_MODELS[0][0],
                            label="Model",
                            elem_id="model-choice",
                            elem_classes="model-choice",
                            allow_custom_value=True
                        )

                        context_display = gr.Textbox(
                            value=update_context_display(ALL_MODELS[0][0]),
                            label="Context",
                            interactive=False,
                            elem_classes="context-size"
                        )
                    
                    # Model category selection
                    with gr.Accordion("Browse by Category", open=False):
                        model_categories = gr.Dropdown(
                            [category["category"] for category in MODELS],
                            label="Categories",
                            value=MODELS[0]["category"]
                        )
                        
                        # Create a container for the category models dropdown
                        with gr.Column(visible=True, elem_id="category-models-container") as category_models_container:
                            # Create a hidden text component to store model choices as JSON
                            category_model_choices = gr.Text(visible=False)

                            # Create the dropdown with no initial choices
                            category_models = gr.Dropdown(
                                [],
                                label="Models in Category",
                                value=None,
                                elem_classes="category-models",
                                allow_custom_value=True
                            )
                
                with gr.Accordion("Generation Parameters", open=False):
                    with gr.Group(elem_classes="parameter-grid"):
                        temperature = gr.Slider(
                            minimum=0.0, 
                            maximum=2.0, 
                            value=0.7, 
                            step=0.1,
                            label="Temperature"
                        )
                        
                        max_tokens = gr.Slider(
                            minimum=100, 
                            maximum=4000, 
                            value=1000, 
                            step=100,
                            label="Max Tokens"
                        )
                        
                        top_p = gr.Slider(
                            minimum=0.1, 
                            maximum=1.0, 
                            value=0.8, 
                            step=0.1,
                            label="Top P"
                        )
                        
                        frequency_penalty = gr.Slider(
                            minimum=-2.0, 
                            maximum=2.0, 
                            value=0.0, 
                            step=0.1,
                            label="Frequency Penalty"
                        )
                        
                        presence_penalty = gr.Slider(
                            minimum=-2.0, 
                            maximum=2.0, 
                            value=0.0, 
                            step=0.1,
                            label="Presence Penalty"
                        )
                        
                        reasoning_effort = gr.Radio(
                            ["none", "low", "medium", "high"],
                            value="none",
                            label="Reasoning Effort"
                        )
                
                with gr.Accordion("Advanced Options", open=False):
                    with gr.Row():
                        with gr.Column():
                            repetition_penalty = gr.Slider(
                                minimum=0.1, 
                                maximum=2.0, 
                                value=1.0, 
                                step=0.1,
                                label="Repetition Penalty"
                            )
                            
                            top_k = gr.Slider(
                                minimum=1, 
                                maximum=100, 
                                value=40, 
                                step=1,
                                label="Top K"
                            )
                            
                            min_p = gr.Slider(
                                minimum=0.0, 
                                maximum=1.0, 
                                value=0.1, 
                                step=0.05,
                                label="Min P"
                            )
                        
                        with gr.Column():
                            seed = gr.Number(
                                value=0,
                                label="Seed (0 for random)",
                                precision=0
                            )
                            
                            top_a = gr.Slider(
                                minimum=0.0, 
                                maximum=1.0, 
                                value=0.0, 
                                step=0.05,
                                label="Top A"
                            )
                            
                            stream_output = gr.Checkbox(
                                label="Stream Output",
                                value=False
                            )
                    
                    with gr.Row():
                        response_format = gr.Radio(
                            ["default", "json_object"],
                            value="default",
                            label="Response Format"
                        )
                        
                        gr.Markdown("""
                        * **json_object**: Forces the model to respond with valid JSON only.
                        * Only available on certain models - check model support on OpenRouter.
                        """)
                
                # Custom instructing options
                with gr.Accordion("Custom Instructions", open=False):
                    system_message = gr.Textbox(
                        placeholder="Enter a system message to guide the model's behavior...",
                        label="System Message",
                        lines=3
                    )
                    
                    transforms = gr.CheckboxGroup(
                        ["prompt_optimize", "prompt_distill", "prompt_compress"],
                        label="Prompt Transforms (OpenRouter specific)"
                    )
                    
                    gr.Markdown("""
                    * **prompt_optimize**: Improve prompt for better responses.
                    * **prompt_distill**: Compress prompt to use fewer tokens without changing meaning.
                    * **prompt_compress**: Aggressively compress prompt to fit larger contexts.
                    """)
                
                # Add a model information section
                with gr.Accordion("About Selected Model", open=False):
                    model_info_display = gr.HTML(
                        value=update_model_info(ALL_MODELS[0][0])
                    )
        
        # Add usage instructions
        with gr.Accordion("Usage Instructions", open=False):
            gr.Markdown("""
            ## Basic Usage
            1. Type your message in the input box
            2. Select a model from the dropdown
            3. Click "Send" or press Enter
            
            ## Working with Files
            - **Images**: Upload images to use with vision-capable models
            - **Documents**: Upload PDF, Markdown, or text files to analyze their content
            
            ## Advanced Parameters
            - **Temperature**: Controls randomness (higher = more creative, lower = more deterministic)
            - **Max Tokens**: Maximum length of the response
            - **Top P**: Nucleus sampling threshold (higher = consider more tokens)
            - **Reasoning Effort**: Some models can show their reasoning process
            
            ## Tips
            - For code generation, use models like Qwen Coder
            - For visual tasks, choose vision-capable models
            - For long context, check the context window size next to the model name
            """)
        
        # Add a footer with version info
        footer_md = gr.Markdown("""
        ---
        ### CrispChat v1.1
        Built with ❤️ using Gradio 4.44.1 and OpenRouter API | Context sizes shown next to model names
        """)
        
        # Define a test function for debugging
        def test_chatbot(test_message):
            """Simple test function to verify chatbot updates work"""
            logger.info(f"Test function called with: {test_message}")
            return [[test_message, "This is a test response to verify the chatbot is working"]]
        
        # Connect model search to dropdown filter
        model_search.change(
            fn=filter_models,
            inputs=model_search,
            outputs=[model_choice, model_choice]
        )
        
        # Update context display when model changes
        model_choice.change(
            fn=update_context_display,
            inputs=model_choice,
            outputs=context_display
        )
        
        # Update model info when model changes
        model_choice.change(
            fn=update_model_info,
            inputs=model_choice,
            outputs=model_info_display
        )
        
        # Update model list when category changes
        model_categories.change(
            fn=lambda cat: json.dumps(get_models_for_category(cat)),
            inputs=model_categories,
            outputs=category_model_choices
        )
        
        # Update main model choice when category model is selected
        category_models.change(
            fn=lambda x: x,
            inputs=category_models,
            outputs=model_choice
        )

        category_model_choices.change(
            fn=None,
            inputs=None,
            outputs=None,
            _js="""
            function(choices_json) {
                // Parse JSON string to array
                const choices = JSON.parse(choices_json);
                
                // Find the dropdown element
                const dropdown = document.querySelector('.category-models select');
                
                // Clear existing options
                dropdown.innerHTML = '';
                
                // Add new options
                choices.forEach(model => {
                    const option = document.createElement('option');
                    option.value = model;
                    option.textContent = model;
                    dropdown.appendChild(option);
                });
                
                // Set the first option as selected if available
                if (choices.length > 0) {
                    dropdown.value = choices[0];
                    
                    // Update the main model dropdown
                    const mainDropdown = document.querySelector('.model-choice select');
                    mainDropdown.value = choices[0];
                    
                    // Trigger change events
                    dropdown.dispatchEvent(new Event('change', { bubbles: true }));
                    mainDropdown.dispatchEvent(new Event('change', { bubbles: true }));
                }
            }
            """
        )

        # Function to initialize the category models dropdown
        def init_category_models():
            initial_category = MODELS[0]["category"]
            initial_models = get_models_for_category(initial_category)
            return json.dumps(initial_models)

        # Set initial choices for category models dropdown
        category_model_choices.value = init_category_models()

        # Process uploaded images
        image_upload_btn.upload(
            fn=lambda files: files,
            inputs=image_upload_btn,
            outputs=images
        )
        
        # Set up events for the submit button
        submit_btn.click(
            fn=ask_ai,
            inputs=[
                message, chatbot, model_choice, temperature, max_tokens, 
                top_p, frequency_penalty, presence_penalty, repetition_penalty, 
                top_k, min_p, seed, top_a, stream_output, response_format,
                images, documents, reasoning_effort, system_message, transforms
            ],
            outputs=chatbot,
            show_progress="minimal",
        ).then(
            fn=lambda: "",  # Clear message box after sending
            inputs=None,
            outputs=message
        )
        
        # Set up events for message submission (pressing Enter)
        message.submit(
            fn=ask_ai,
            inputs=[
                message, chatbot, model_choice, temperature, max_tokens, 
                top_p, frequency_penalty, presence_penalty, repetition_penalty, 
                top_k, min_p, seed, top_a, stream_output, response_format,
                images, documents, reasoning_effort, system_message, transforms
            ],
            outputs=chatbot,
            show_progress="minimal",
        ).then(
            fn=lambda: "",  # Clear message box after sending
            inputs=None,
            outputs=message
        )
        
        # Set up events for the clear button
        clear_btn.click(
            fn=clear_chat,
            inputs=[],
            outputs=[
                chatbot, message, images, documents, temperature, 
                max_tokens, top_p, frequency_penalty, presence_penalty,
                repetition_penalty, top_k, min_p, seed, top_a, stream_output,
                response_format, reasoning_effort, system_message, transforms
            ]
        )
        
        # Debug button (hidden in production)
        debug_btn = gr.Button("Debug Chatbot", visible=False)
        debug_btn.click(
            fn=test_chatbot,
            inputs=[message],
            outputs=[chatbot]
        )
        
        # Enable debugging for key components
        # gr.debug(chatbot)
        
        return demo




# Launch the app
if __name__ == "__main__":
    # Check API key before starting
    if not OPENROUTER_API_KEY:
        logger.warning("WARNING: OPENROUTER_API_KEY environment variable is not set")
        print("WARNING: OpenRouter API key not found. Set OPENROUTER_API_KEY environment variable.")
    
    demo = create_app()
    demo.launch(
        server_name="0.0.0.0", 
        server_port=7860, 
        debug=True,
        show_error=True
    )