File size: 45,617 Bytes
a13c2bb 453c62c 1ca78b8 5e9023b 453c62c a791178 5e9023b c96734b 453c62c 9dba8e1 453c62c 9dba8e1 453c62c 9dba8e1 453c62c 9dba8e1 9918749 a13c2bb 1ca78b8 a791178 9918749 453c62c 9dba8e1 453c62c 9dba8e1 453c62c 9dba8e1 37f5ab3 5e9023b 453c62c 37f5ab3 5e9023b 453c62c 9dba8e1 453c62c 37f5ab3 5e9023b 453c62c 9dba8e1 453c62c 37f5ab3 5e9023b 453c62c 9dba8e1 453c62c 37f5ab3 5fd37a0 453c62c 5fd37a0 453c62c 5fd37a0 453c62c 37f5ab3 a13c2bb 1ca78b8 37f5ab3 453c62c 37f5ab3 a791178 dacc767 a791178 2db2154 dacc767 81d1619 5e9023b 453c62c 5e9023b a791178 5e9023b 9dba8e1 453c62c 5e9023b 3dc43a9 7050196 5e9023b 37f5ab3 453c62c 37f5ab3 453c62c 9dba8e1 453c62c 37f5ab3 453c62c a791178 37f5ab3 5e9023b 37f5ab3 3dc43a9 37f5ab3 453c62c 5e9023b 37f5ab3 3dc43a9 37f5ab3 3dc43a9 37f5ab3 5e9023b a791178 7050196 3dc43a9 7050196 9dba8e1 a791178 82b8835 a791178 6ee626f a791178 6ee626f a791178 6ee626f a791178 6ee626f a791178 9dba8e1 a791178 9dba8e1 a791178 5e9023b a791178 9dba8e1 a791178 37f5ab3 a791178 37f5ab3 9dba8e1 a791178 9dba8e1 5e9023b 9dba8e1 5e9023b 9dba8e1 32ae536 a791178 9dba8e1 a791178 9dba8e1 a791178 9dba8e1 a791178 9dba8e1 a791178 9dba8e1 a791178 9dba8e1 a791178 6ee626f a791178 9dba8e1 a791178 9dba8e1 a791178 9dba8e1 453c62c 9dba8e1 453c62c a791178 453c62c a791178 453c62c a791178 453c62c a791178 6ee626f a791178 453c62c a791178 453c62c a791178 453c62c 3dc43a9 453c62c a791178 2db2154 82b8835 453c62c 82b8835 453c62c 7050196 453c62c dacc767 82b8835 dacc767 82b8835 dacc767 82b8835 dacc767 453c62c a791178 453c62c a791178 453c62c 7050196 a791178 453c62c 7050196 823a14b 453c62c 7050196 453c62c 82b8835 7050196 82b8835 453c62c 823a14b 7050196 453c62c 82b8835 453c62c 3dc43a9 7050196 453c62c a791178 453c62c a791178 453c62c a791178 6ee626f a791178 453c62c 9dba8e1 82b8835 453c62c c96734b a791178 453c62c a791178 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 |
import os
import gradio as gr
import requests
import json
import base64
import logging
import io
from typing import List, Dict, Any, Union, Tuple, Optional
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Gracefully import libraries with fallbacks
try:
from PIL import Image
except ImportError:
logger.warning("PIL not installed. Image processing will be limited.")
Image = None
try:
import PyPDF2
except ImportError:
logger.warning("PyPDF2 not installed. PDF processing will be limited.")
PyPDF2 = None
try:
import markdown
except ImportError:
logger.warning("Markdown not installed. Markdown processing will be limited.")
markdown = None
# API key
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "")
# Log API key status (masked for security)
if OPENROUTER_API_KEY:
masked_key = OPENROUTER_API_KEY[:4] + "..." + OPENROUTER_API_KEY[-4:] if len(OPENROUTER_API_KEY) > 8 else "***"
logger.info(f"Using API key: {masked_key}")
else:
logger.warning("No API key provided!")
# Keep the existing model lists
MODELS = [
# 1M+ Context Models
{"category": "1M+ Context", "models": [
("Google: Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free", 2000000),
("Google: Gemini 2.0 Flash Thinking Experimental 01-21", "google/gemini-2.0-flash-thinking-exp:free", 1048576),
("Google: Gemini Flash 2.0 Experimental", "google/gemini-2.0-flash-exp:free", 1048576),
("Google: Gemini Pro 2.5 Experimental", "google/gemini-2.5-pro-exp-03-25:free", 1000000),
("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 1000000),
]},
# 100K-1M Context Models
{"category": "100K+ Context", "models": [
("DeepSeek: DeepSeek R1 Zero", "deepseek/deepseek-r1-zero:free", 163840),
("DeepSeek: R1", "deepseek/deepseek-r1:free", 163840),
("DeepSeek: DeepSeek V3 Base", "deepseek/deepseek-v3-base:free", 131072),
("DeepSeek: DeepSeek V3 0324", "deepseek/deepseek-chat-v3-0324:free", 131072),
("Google: Gemma 3 4B", "google/gemma-3-4b-it:free", 131072),
("Google: Gemma 3 12B", "google/gemma-3-12b-it:free", 131072),
("Nous: DeepHermes 3 Llama 3 8B Preview", "nousresearch/deephermes-3-llama-3-8b-preview:free", 131072),
("Qwen: Qwen2.5 VL 72B Instruct", "qwen/qwen2.5-vl-72b-instruct:free", 131072),
("DeepSeek: DeepSeek V3", "deepseek/deepseek-chat:free", 131072),
("NVIDIA: Llama 3.1 Nemotron 70B Instruct", "nvidia/llama-3.1-nemotron-70b-instruct:free", 131072),
("Meta: Llama 3.2 1B Instruct", "meta-llama/llama-3.2-1b-instruct:free", 131072),
("Meta: Llama 3.2 11B Vision Instruct", "meta-llama/llama-3.2-11b-vision-instruct:free", 131072),
("Meta: Llama 3.1 8B Instruct", "meta-llama/llama-3.1-8b-instruct:free", 131072),
("Mistral: Mistral Nemo", "mistralai/mistral-nemo:free", 128000),
]},
# 64K-100K Context Models
{"category": "64K-100K Context", "models": [
("Mistral: Mistral Small 3.1 24B", "mistralai/mistral-small-3.1-24b-instruct:free", 96000),
("Google: Gemma 3 27B", "google/gemma-3-27b-it:free", 96000),
("Qwen: Qwen2.5 VL 3B Instruct", "qwen/qwen2.5-vl-3b-instruct:free", 64000),
("DeepSeek: R1 Distill Qwen 14B", "deepseek/deepseek-r1-distill-qwen-14b:free", 64000),
("Qwen: Qwen2.5-VL 7B Instruct", "qwen/qwen-2.5-vl-7b-instruct:free", 64000),
]},
# 32K-64K Context Models
{"category": "32K-64K Context", "models": [
("Google: LearnLM 1.5 Pro Experimental", "google/learnlm-1.5-pro-experimental:free", 40960),
("Qwen: QwQ 32B", "qwen/qwq-32b:free", 40000),
("Google: Gemini 2.0 Flash Thinking Experimental", "google/gemini-2.0-flash-thinking-exp-1219:free", 40000),
("Bytedance: UI-TARS 72B", "bytedance-research/ui-tars-72b:free", 32768),
("Qwerky 72b", "featherless/qwerky-72b:free", 32768),
("OlympicCoder 7B", "open-r1/olympiccoder-7b:free", 32768),
("OlympicCoder 32B", "open-r1/olympiccoder-32b:free", 32768),
("Google: Gemma 3 1B", "google/gemma-3-1b-it:free", 32768),
("Reka: Flash 3", "rekaai/reka-flash-3:free", 32768),
("Dolphin3.0 R1 Mistral 24B", "cognitivecomputations/dolphin3.0-r1-mistral-24b:free", 32768),
("Dolphin3.0 Mistral 24B", "cognitivecomputations/dolphin3.0-mistral-24b:free", 32768),
("Mistral: Mistral Small 3", "mistralai/mistral-small-24b-instruct-2501:free", 32768),
("Qwen2.5 Coder 32B Instruct", "qwen/qwen-2.5-coder-32b-instruct:free", 32768),
("Qwen2.5 72B Instruct", "qwen/qwen-2.5-72b-instruct:free", 32768),
]},
# 8K-32K Context Models
{"category": "8K-32K Context", "models": [
("Meta: Llama 3.2 3B Instruct", "meta-llama/llama-3.2-3b-instruct:free", 20000),
("Qwen: QwQ 32B Preview", "qwen/qwq-32b-preview:free", 16384),
("DeepSeek: R1 Distill Qwen 32B", "deepseek/deepseek-r1-distill-qwen-32b:free", 16000),
("Qwen: Qwen2.5 VL 32B Instruct", "qwen/qwen2.5-vl-32b-instruct:free", 8192),
("Moonshot AI: Moonlight 16B A3B Instruct", "moonshotai/moonlight-16b-a3b-instruct:free", 8192),
("DeepSeek: R1 Distill Llama 70B", "deepseek/deepseek-r1-distill-llama-70b:free", 8192),
("Qwen 2 7B Instruct", "qwen/qwen-2-7b-instruct:free", 8192),
("Google: Gemma 2 9B", "google/gemma-2-9b-it:free", 8192),
("Mistral: Mistral 7B Instruct", "mistralai/mistral-7b-instruct:free", 8192),
("Microsoft: Phi-3 Mini 128K Instruct", "microsoft/phi-3-mini-128k-instruct:free", 8192),
("Microsoft: Phi-3 Medium 128K Instruct", "microsoft/phi-3-medium-128k-instruct:free", 8192),
("Meta: Llama 3 8B Instruct", "meta-llama/llama-3-8b-instruct:free", 8192),
("OpenChat 3.5 7B", "openchat/openchat-7b:free", 8192),
("Meta: Llama 3.3 70B Instruct", "meta-llama/llama-3.3-70b-instruct:free", 8000),
]},
# <8K Context Models
{"category": "4K Context", "models": [
("AllenAI: Molmo 7B D", "allenai/molmo-7b-d:free", 4096),
("Rogue Rose 103B v0.2", "sophosympatheia/rogue-rose-103b-v0.2:free", 4096),
("Toppy M 7B", "undi95/toppy-m-7b:free", 4096),
("Hugging Face: Zephyr 7B", "huggingfaceh4/zephyr-7b-beta:free", 4096),
("MythoMax 13B", "gryphe/mythomax-l2-13b:free", 4096),
]},
# Vision-capable Models
{"category": "Vision Models", "models": [
("Google: Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free", 2000000),
("Google: Gemini 2.0 Flash Thinking Experimental 01-21", "google/gemini-2.0-flash-thinking-exp:free", 1048576),
("Google: Gemini Flash 2.0 Experimental", "google/gemini-2.0-flash-exp:free", 1048576),
("Google: Gemini Pro 2.5 Experimental", "google/gemini-2.5-pro-exp-03-25:free", 1000000),
("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 1000000),
("Google: Gemma 3 4B", "google/gemma-3-4b-it:free", 131072),
("Google: Gemma 3 12B", "google/gemma-3-12b-it:free", 131072),
("Qwen: Qwen2.5 VL 72B Instruct", "qwen/qwen2.5-vl-72b-instruct:free", 131072),
("Meta: Llama 3.2 11B Vision Instruct", "meta-llama/llama-3.2-11b-vision-instruct:free", 131072),
("Mistral: Mistral Small 3.1 24B", "mistralai/mistral-small-3.1-24b-instruct:free", 96000),
("Google: Gemma 3 27B", "google/gemma-3-27b-it:free", 96000),
("Qwen: Qwen2.5 VL 3B Instruct", "qwen/qwen2.5-vl-3b-instruct:free", 64000),
("Qwen: Qwen2.5-VL 7B Instruct", "qwen/qwen-2.5-vl-7b-instruct:free", 64000),
("Google: LearnLM 1.5 Pro Experimental", "google/learnlm-1.5-pro-experimental:free", 40960),
("Google: Gemini 2.0 Flash Thinking Experimental", "google/gemini-2.0-flash-thinking-exp-1219:free", 40000),
("Bytedance: UI-TARS 72B", "bytedance-research/ui-tars-72b:free", 32768),
("Google: Gemma 3 1B", "google/gemma-3-1b-it:free", 32768),
("Qwen: Qwen2.5 VL 32B Instruct", "qwen/qwen2.5-vl-32b-instruct:free", 8192),
("AllenAI: Molmo 7B D", "allenai/molmo-7b-d:free", 4096),
]},
]
# Flatten model list for easy searching
ALL_MODELS = []
for category in MODELS:
for model in category["models"]:
if model not in ALL_MODELS: # Avoid duplicates
ALL_MODELS.append(model)
# Helper functions moved to the top to avoid undefined references
def filter_models(search_term):
"""Filter models based on search term"""
if not search_term:
return [model[0] for model in ALL_MODELS], ALL_MODELS[0][0]
filtered_models = [model[0] for model in ALL_MODELS if search_term.lower() in model[0].lower()]
if filtered_models:
return filtered_models, filtered_models[0]
else:
return [model[0] for model in ALL_MODELS], ALL_MODELS[0][0]
def update_context_display(model_name):
"""Update context size display for the selected model"""
for model in ALL_MODELS:
if model[0] == model_name:
_, _, context_size = model
context_formatted = f"{context_size:,}"
return f"{context_formatted} tokens"
return "Unknown"
def update_model_info(model_name):
"""Generate HTML info display for the selected model"""
for model in ALL_MODELS:
if model[0] == model_name:
name, model_id, context_size = model
# Check if this is a vision model
is_vision_model = False
for cat in MODELS:
if cat["category"] == "Vision Models":
if any(m[0] == model_name for m in cat["models"]):
is_vision_model = True
break
vision_badge = '<span style="background-color: #4CAF50; color: white; padding: 3px 6px; border-radius: 3px; font-size: 0.8em; margin-left: 5px;">Vision</span>' if is_vision_model else ''
return f"""
<div class="model-info">
<h3>{name} {vision_badge}</h3>
<p><strong>Model ID:</strong> {model_id}</p>
<p><strong>Context Size:</strong> {context_size:,} tokens</p>
<p><strong>Provider:</strong> {model_id.split('/')[0]}</p>
{f'<p><strong>Features:</strong> Supports image understanding</p>' if is_vision_model else ''}
</div>
"""
return "<p>Model information not available</p>"
def update_category_models_ui(category):
"""Completely regenerate the models dropdown based on selected category"""
for cat in MODELS:
if cat["category"] == category:
model_names = [model[0] for model in cat["models"]]
if model_names:
# Return a completely new dropdown component
return gr.Dropdown(
choices=model_names,
value=model_names[0],
label="Models in Category",
allow_custom_value=True
)
# Return empty dropdown if no models found
return gr.Dropdown(
choices=[],
value=None,
label="Models in Category",
allow_custom_value=True
)
def encode_image_to_base64(image_path):
"""Encode an image file to base64 string"""
try:
if isinstance(image_path, str): # File path as string
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
file_extension = image_path.split('.')[-1].lower()
mime_type = f"image/{file_extension}"
if file_extension in ["jpg", "jpeg"]:
mime_type = "image/jpeg"
elif file_extension == "png":
mime_type = "image/png"
elif file_extension == "webp":
mime_type = "image/webp"
return f"data:{mime_type};base64,{encoded_string}"
elif hasattr(image_path, 'name'): # Handle Gradio file objects directly
with open(image_path.name, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
file_extension = image_path.name.split('.')[-1].lower()
mime_type = f"image/{file_extension}"
if file_extension in ["jpg", "jpeg"]:
mime_type = "image/jpeg"
elif file_extension == "png":
mime_type = "image/png"
elif file_extension == "webp":
mime_type = "image/webp"
return f"data:{mime_type};base64,{encoded_string}"
else: # Handle file object or other types
logger.error(f"Unsupported image type: {type(image_path)}")
return None
except Exception as e:
logger.error(f"Error encoding image: {str(e)}")
return None
def extract_text_from_file(file_path):
"""Extract text from various file types"""
try:
file_extension = file_path.split('.')[-1].lower()
if file_extension == 'pdf':
if PyPDF2 is not None:
text = ""
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
text += page.extract_text() + "\n\n"
return text
else:
return "PDF processing is not available (PyPDF2 not installed)"
elif file_extension == 'md':
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
elif file_extension == 'txt':
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
else:
return f"Unsupported file type: {file_extension}"
except Exception as e:
logger.error(f"Error extracting text from file: {str(e)}")
return f"Error processing file: {str(e)}"
def prepare_message_with_media(text, images=None, documents=None):
"""Prepare a message with text, images, and document content"""
# If no media, return text only
if not images and not documents:
return text
# Start with text content
if documents and len(documents) > 0:
# If there are documents, append their content to the text
document_texts = []
for doc in documents:
if doc is None:
continue
# Make sure to handle file objects properly
doc_path = doc.name if hasattr(doc, 'name') else doc
doc_text = extract_text_from_file(doc_path)
if doc_text:
document_texts.append(doc_text)
# Add document content to text
if document_texts:
if not text:
text = "Please analyze these documents:"
else:
text = f"{text}\n\nDocument content:\n\n"
text += "\n\n".join(document_texts)
# If no images, return text only
if not images:
return text
# If we have images, create a multimodal content array
content = [{"type": "text", "text": text}]
# Add images if any
if images:
# Check if images is a list of image paths or file objects
if isinstance(images, list):
for img in images:
if img is None:
continue
encoded_image = encode_image_to_base64(img)
if encoded_image:
content.append({
"type": "image_url",
"image_url": {"url": encoded_image}
})
else:
# For single image or Gallery component
logger.warning(f"Images is not a list: {type(images)}")
# Try to handle as single image
encoded_image = encode_image_to_base64(images)
if encoded_image:
content.append({
"type": "image_url",
"image_url": {"url": encoded_image}
})
return content
def format_to_message_dict(history):
"""Convert history to proper message format"""
messages = []
for pair in history:
if len(pair) == 2:
human, ai = pair
if human:
messages.append({"role": "user", "content": human})
if ai:
messages.append({"role": "assistant", "content": ai})
return messages
def process_uploaded_images(files):
"""Process uploaded image files"""
file_paths = []
for file in files:
if hasattr(file, 'name'):
file_paths.append(file.name)
return file_paths
def get_model_info(model_choice):
"""Get model ID and context size from model name"""
for name, model_id_value, ctx_size in ALL_MODELS:
if name == model_choice:
return model_id_value, ctx_size
return None, 0
def get_models_for_category(category):
"""Get model list for a specific category"""
for cat in MODELS:
if cat["category"] == category:
return [model[0] for model in cat["models"]]
return []
def call_openrouter_api(payload):
"""Make a call to OpenRouter API with error handling"""
try:
response = requests.post(
"https://openrouter.ai/api/v1/chat/completions",
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"HTTP-Referer": "https://huggingface.co/spaces/cstr/CrispChat"
},
json=payload,
timeout=180 # Longer timeout for document processing
)
return response
except requests.RequestException as e:
logger.error(f"API request error: {str(e)}")
raise e
def extract_ai_response(result):
"""Extract AI response from OpenRouter API result"""
try:
if "choices" in result and len(result["choices"]) > 0:
if "message" in result["choices"][0]:
# Handle reasoning field if available
message = result["choices"][0]["message"]
if message.get("reasoning") and not message.get("content"):
# Extract response from reasoning if there's no content
reasoning = message.get("reasoning")
# If reasoning contains the actual response, find it
lines = reasoning.strip().split('\n')
for line in lines:
if line and not line.startswith('I should') and not line.startswith('Let me'):
return line.strip()
# If no clear response found, return the first non-empty line
for line in lines:
if line.strip():
return line.strip()
return message.get("content", "")
elif "delta" in result["choices"][0]:
return result["choices"][0]["delta"].get("content", "")
logger.error(f"Unexpected response structure: {result}")
return "Error: Could not extract response from API result"
except Exception as e:
logger.error(f"Error extracting AI response: {str(e)}")
return f"Error: {str(e)}"
# streaming code:
def streaming_handler(response, chatbot, message_idx):
try:
# First add the user message if needed
if len(chatbot) == message_idx:
chatbot.append({"role": "user", "content": message})
chatbot.append({"role": "assistant", "content": ""})
for line in response.iter_lines():
if not line:
continue
line = line.decode('utf-8')
if not line.startswith('data: '):
continue
data = line[6:]
if data.strip() == '[DONE]':
break
try:
chunk = json.loads(data)
if "choices" in chunk and len(chunk["choices"]) > 0:
delta = chunk["choices"][0].get("delta", {})
if "content" in delta and delta["content"]:
# Update the last message content
chatbot[-1]["content"] += delta["content"]
yield chatbot
except json.JSONDecodeError:
logger.error(f"Failed to parse JSON from chunk: {data}")
except Exception as e:
logger.error(f"Error in streaming handler: {str(e)}")
# Add error message to the current response
if len(chatbot) > message_idx:
chatbot[-1]["content"] += f"\n\nError during streaming: {str(e)}"
yield chatbot
def ask_ai(message, history, model_choice, temperature, max_tokens, top_p,
frequency_penalty, presence_penalty, repetition_penalty, top_k,
min_p, seed, top_a, stream_output, response_format,
images, documents, reasoning_effort, system_message, transforms):
"""Redesigned AI query function with proper error handling for Gradio 4.44.1"""
# Validate input
if not message.strip() and not images and not documents:
return history
# Get model information
model_id, context_size = get_model_info(model_choice)
if not model_id:
logger.error(f"Model not found: {model_choice}")
history.append((message, f"Error: Model '{model_choice}' not found"))
return history
# Copy history to new list to avoid modifying the original
chat_history = list(history)
# Create messages from chat history
messages = format_to_message_dict(chat_history)
# Add system message if provided
if system_message and system_message.strip():
# Remove any existing system message
messages = [msg for msg in messages if msg.get("role") != "system"]
# Add new system message at the beginning
messages.insert(0, {"role": "system", "content": system_message.strip()})
# Prepare message with images and documents if any
content = prepare_message_with_media(message, images, documents)
# Add current message
messages.append({"role": "user", "content": content})
# Build the payload with all parameters
payload = {
"model": model_id,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
"presence_penalty": presence_penalty,
"stream": stream_output
}
# Add optional parameters if set
if repetition_penalty != 1.0:
payload["repetition_penalty"] = repetition_penalty
if top_k > 0:
payload["top_k"] = top_k
if min_p > 0:
payload["min_p"] = min_p
if seed > 0:
payload["seed"] = seed
if top_a > 0:
payload["top_a"] = top_a
# Add response format if JSON is requested
if response_format == "json_object":
payload["response_format"] = {"type": "json_object"}
# Add reasoning if selected
if reasoning_effort != "none":
payload["reasoning"] = {
"effort": reasoning_effort
}
# Add transforms if selected
if transforms:
payload["transforms"] = transforms
# Log the request
logger.info(f"Sending request to model: {model_id}")
logger.info(f"Request payload: {json.dumps(payload, default=str)}")
try:
# Call OpenRouter API
response = call_openrouter_api(payload)
logger.info(f"Response status: {response.status_code}")
# Handle streaming response
if stream_output and response.status_code == 200:
# Add empty response slot to history
chat_history.append([message, ""])
# Set up generator for streaming updates
def streaming_generator():
for updated_history in streaming_handler(response, chat_history, len(chat_history) - 1):
yield updated_history
return streaming_generator()
# Handle normal response
elif response.status_code == 200:
result = response.json()
logger.info(f"Response content: {result}")
# Extract AI response
ai_response = extract_ai_response(result)
# Log token usage if available
if "usage" in result:
logger.info(f"Token usage: {result['usage']}")
# Add response to history
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": ai_response})
return chat_history
# Handle error response
else:
error_message = f"Error: Status code {response.status_code}"
try:
response_data = response.json()
error_message += f"\n\nDetails: {json.dumps(response_data, indent=2)}"
except:
error_message += f"\n\nResponse: {response.text}"
logger.error(error_message)
chat_history.append([message, error_message])
return chat_history
except Exception as e:
error_message = f"Error: {str(e)}"
logger.error(f"Exception during API call: {error_message}")
chat_history.append([message, error_message])
return chat_history
def clear_chat():
"""Reset all inputs"""
return [], "", [], [], 0.7, 1000, 0.8, 0.0, 0.0, 1.0, 40, 0.1, 0, 0.0, False, "default", "none", "", []
def create_app():
"""Create the Gradio application with improved UI and response handling"""
with gr.Blocks(
title="CrispChat - AI Assistant",
css="""
.context-size {
font-size: 0.9em;
color: #666;
margin-left: 10px;
}
footer { display: none !important; }
.model-selection-row {
display: flex;
align-items: center;
}
.parameter-grid {
display: grid;
grid-template-columns: 1fr 1fr;
gap: 10px;
}
.vision-badge {
background-color: #4CAF50;
color: white;
padding: 3px 6px;
border-radius: 3px;
font-size: 0.8em;
margin-left: 5px;
}
"""
) as demo:
gr.Markdown("""
# CrispChat AI Assistant
Chat with various AI models from OpenRouter with support for images and documents.
""")
with gr.Row():
with gr.Column(scale=2):
# Chatbot interface - properly configured for Gradio 4.44.1
chatbot = gr.Chatbot(
height=500,
show_copy_button=True,
show_label=False,
avatar_images=(None, "https://upload.wikimedia.org/wikipedia/commons/0/04/ChatGPT_logo.svg"),
type="messages", # Explicitly set the type to messages
elem_id="chat-window" # Add elem_id for debugging
)
# Debug output for development
debug_output = gr.JSON(
label="Debug Output (Hidden in Production)",
visible=False
)
with gr.Row():
message = gr.Textbox(
placeholder="Type your message here...",
label="Message",
lines=2,
elem_id="message-input", # Add elem_id for debugging
scale=4
)
with gr.Row():
with gr.Column(scale=3):
submit_btn = gr.Button("Send", variant="primary", elem_id="send-btn")
with gr.Column(scale=1):
clear_btn = gr.Button("Clear Chat", variant="secondary")
with gr.Row():
# Image upload
with gr.Accordion("Upload Images (for vision models)", open=False):
images = gr.File(
label="Uploaded Images",
file_types=["image"],
file_count="multiple"
)
image_upload_btn = gr.UploadButton(
label="Upload Images",
file_types=["image"],
file_count="multiple"
)
# Document upload
with gr.Accordion("Upload Documents (PDF, MD, TXT)", open=False):
documents = gr.File(
label="Uploaded Documents",
file_types=[".pdf", ".md", ".txt"],
file_count="multiple"
)
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("### Model Selection")
with gr.Row(elem_classes="model-selection-row"):
model_search = gr.Textbox(
placeholder="Search models...",
label="",
show_label=False
)
with gr.Row(elem_classes="model-selection-row"):
model_choice = gr.Dropdown(
[model[0] for model in ALL_MODELS],
value=ALL_MODELS[0][0],
label="Model",
elem_id="model-choice",
elem_classes="model-choice",
allow_custom_value=True
)
context_display = gr.Textbox(
value=update_context_display(ALL_MODELS[0][0]),
label="Context",
interactive=False,
elem_classes="context-size"
)
# Model category selection
with gr.Accordion("Browse by Category", open=False):
model_categories = gr.Dropdown(
[category["category"] for category in MODELS],
label="Categories",
value=MODELS[0]["category"]
)
# Create a container for the category models dropdown
with gr.Column(visible=True, elem_id="category-models-container") as category_models_container:
# Create a hidden text component to store model choices as JSON
category_model_choices = gr.Text(visible=False)
# Create the dropdown with no initial choices
category_models = gr.Dropdown(
[],
label="Models in Category",
value=None,
elem_classes="category-models",
allow_custom_value=True
)
with gr.Accordion("Generation Parameters", open=False):
with gr.Group(elem_classes="parameter-grid"):
temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature"
)
max_tokens = gr.Slider(
minimum=100,
maximum=4000,
value=1000,
step=100,
label="Max Tokens"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.8,
step=0.1,
label="Top P"
)
frequency_penalty = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
)
presence_penalty = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Presence Penalty"
)
reasoning_effort = gr.Radio(
["none", "low", "medium", "high"],
value="none",
label="Reasoning Effort"
)
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
with gr.Column():
repetition_penalty = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
label="Repetition Penalty"
)
top_k = gr.Slider(
minimum=1,
maximum=100,
value=40,
step=1,
label="Top K"
)
min_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.1,
step=0.05,
label="Min P"
)
with gr.Column():
seed = gr.Number(
value=0,
label="Seed (0 for random)",
precision=0
)
top_a = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.0,
step=0.05,
label="Top A"
)
stream_output = gr.Checkbox(
label="Stream Output",
value=False
)
with gr.Row():
response_format = gr.Radio(
["default", "json_object"],
value="default",
label="Response Format"
)
gr.Markdown("""
* **json_object**: Forces the model to respond with valid JSON only.
* Only available on certain models - check model support on OpenRouter.
""")
# Custom instructing options
with gr.Accordion("Custom Instructions", open=False):
system_message = gr.Textbox(
placeholder="Enter a system message to guide the model's behavior...",
label="System Message",
lines=3
)
transforms = gr.CheckboxGroup(
["prompt_optimize", "prompt_distill", "prompt_compress"],
label="Prompt Transforms (OpenRouter specific)"
)
gr.Markdown("""
* **prompt_optimize**: Improve prompt for better responses.
* **prompt_distill**: Compress prompt to use fewer tokens without changing meaning.
* **prompt_compress**: Aggressively compress prompt to fit larger contexts.
""")
# Add a model information section
with gr.Accordion("About Selected Model", open=False):
model_info_display = gr.HTML(
value=update_model_info(ALL_MODELS[0][0])
)
# Add usage instructions
with gr.Accordion("Usage Instructions", open=False):
gr.Markdown("""
## Basic Usage
1. Type your message in the input box
2. Select a model from the dropdown
3. Click "Send" or press Enter
## Working with Files
- **Images**: Upload images to use with vision-capable models
- **Documents**: Upload PDF, Markdown, or text files to analyze their content
## Advanced Parameters
- **Temperature**: Controls randomness (higher = more creative, lower = more deterministic)
- **Max Tokens**: Maximum length of the response
- **Top P**: Nucleus sampling threshold (higher = consider more tokens)
- **Reasoning Effort**: Some models can show their reasoning process
## Tips
- For code generation, use models like Qwen Coder
- For visual tasks, choose vision-capable models
- For long context, check the context window size next to the model name
""")
# Add a footer with version info
footer_md = gr.Markdown("""
---
### CrispChat v1.1
Built with ❤️ using Gradio 4.44.1 and OpenRouter API | Context sizes shown next to model names
""")
# Define a test function for debugging
def test_chatbot(test_message):
"""Simple test function to verify chatbot updates work"""
logger.info(f"Test function called with: {test_message}")
return [[test_message, "This is a test response to verify the chatbot is working"]]
# Connect model search to dropdown filter
model_search.change(
fn=filter_models,
inputs=model_search,
outputs=[model_choice, model_choice]
)
# Update context display when model changes
model_choice.change(
fn=update_context_display,
inputs=model_choice,
outputs=context_display
)
# Update model info when model changes
model_choice.change(
fn=update_model_info,
inputs=model_choice,
outputs=model_info_display
)
# Update model list when category changes
model_categories.change(
fn=lambda cat: json.dumps(get_models_for_category(cat)),
inputs=model_categories,
outputs=category_model_choices
)
# Update main model choice when category model is selected
category_models.change(
fn=lambda x: x,
inputs=category_models,
outputs=model_choice
)
category_model_choices.change(
fn=None,
inputs=None,
outputs=None,
_js="""
function(choices_json) {
// Parse JSON string to array
const choices = JSON.parse(choices_json);
// Find the dropdown element
const dropdown = document.querySelector('.category-models select');
// Clear existing options
dropdown.innerHTML = '';
// Add new options
choices.forEach(model => {
const option = document.createElement('option');
option.value = model;
option.textContent = model;
dropdown.appendChild(option);
});
// Set the first option as selected if available
if (choices.length > 0) {
dropdown.value = choices[0];
// Update the main model dropdown
const mainDropdown = document.querySelector('.model-choice select');
mainDropdown.value = choices[0];
// Trigger change events
dropdown.dispatchEvent(new Event('change', { bubbles: true }));
mainDropdown.dispatchEvent(new Event('change', { bubbles: true }));
}
}
"""
)
# Function to initialize the category models dropdown
def init_category_models():
initial_category = MODELS[0]["category"]
initial_models = get_models_for_category(initial_category)
return json.dumps(initial_models)
# Set initial choices for category models dropdown
category_model_choices.value = init_category_models()
# Process uploaded images
image_upload_btn.upload(
fn=lambda files: files,
inputs=image_upload_btn,
outputs=images
)
# Set up events for the submit button
submit_btn.click(
fn=ask_ai,
inputs=[
message, chatbot, model_choice, temperature, max_tokens,
top_p, frequency_penalty, presence_penalty, repetition_penalty,
top_k, min_p, seed, top_a, stream_output, response_format,
images, documents, reasoning_effort, system_message, transforms
],
outputs=chatbot,
show_progress="minimal",
).then(
fn=lambda: "", # Clear message box after sending
inputs=None,
outputs=message
)
# Set up events for message submission (pressing Enter)
message.submit(
fn=ask_ai,
inputs=[
message, chatbot, model_choice, temperature, max_tokens,
top_p, frequency_penalty, presence_penalty, repetition_penalty,
top_k, min_p, seed, top_a, stream_output, response_format,
images, documents, reasoning_effort, system_message, transforms
],
outputs=chatbot,
show_progress="minimal",
).then(
fn=lambda: "", # Clear message box after sending
inputs=None,
outputs=message
)
# Set up events for the clear button
clear_btn.click(
fn=clear_chat,
inputs=[],
outputs=[
chatbot, message, images, documents, temperature,
max_tokens, top_p, frequency_penalty, presence_penalty,
repetition_penalty, top_k, min_p, seed, top_a, stream_output,
response_format, reasoning_effort, system_message, transforms
]
)
# Debug button (hidden in production)
debug_btn = gr.Button("Debug Chatbot", visible=False)
debug_btn.click(
fn=test_chatbot,
inputs=[message],
outputs=[chatbot]
)
# Enable debugging for key components
# gr.debug(chatbot)
return demo
# Launch the app
if __name__ == "__main__":
# Check API key before starting
if not OPENROUTER_API_KEY:
logger.warning("WARNING: OPENROUTER_API_KEY environment variable is not set")
print("WARNING: OpenRouter API key not found. Set OPENROUTER_API_KEY environment variable.")
demo = create_app()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
debug=True,
show_error=True
) |