cstr commited on
Commit
1ca78b8
·
verified ·
1 Parent(s): ecae531

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +77 -59
app.py CHANGED
@@ -1,64 +1,82 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ import requests
3
+ import json
4
+ import os
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
+ # Set OpenRouter API key in the Space's secrets as "OPENROUTER_API_KEY"
7
+ OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY")
8
+ HEADERS = {
9
+ "Authorization": f"Bearer {OPENROUTER_API_KEY}",
10
+ "HTTP-Referer": "https://huggingface.co/spaces/YOUR_SPACE", # Optional
11
+ "X-Title": "CrispChat" # Optional
12
+ }
13
+
14
+ # List of free OpenRouter models
15
+ FREE_MODELS = {
16
+ "Google: Gemini Pro 2.5 Experimental (free)": ("google/gemini-2.5-pro-exp-03-25:free", 1000000),
17
+ "DeepSeek: DeepSeek V3 (free)": ("deepseek/deepseek-chat:free", 131072),
18
+ "Meta: Llama 3.2 11B Vision Instruct (free)": ("meta-llama/llama-3.2-11b-vision-instruct:free", 131072),
19
+ "Qwen: Qwen2.5 VL 72B Instruct (free)": ("qwen/qwen2.5-vl-72b-instruct:free", 131072),
20
+ }
21
+
22
+
23
+ def query_openrouter_model(model_id, prompt, image=None):
24
+ messages = [{"role": "user", "content": prompt}]
25
+
26
+ # If image is included, add it to the message content as a dict
27
+ if image is not None:
28
+ with open(image, "rb") as f:
29
+ image_bytes = f.read()
30
+ base64_image = base64.b64encode(image_bytes).decode("utf-8")
31
+ messages[0]["content"] = [
32
+ {"type": "text", "text": prompt},
33
+ {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}
34
+ ]
35
+
36
+ payload = {
37
+ "model": model_id,
38
+ "messages": messages
39
+ }
40
+
41
+ response = requests.post(
42
+ url="https://openrouter.ai/api/v1/chat/completions",
43
+ headers=HEADERS,
44
+ data=json.dumps(payload)
45
+ )
46
+
47
+ try:
48
+ response.raise_for_status()
49
+ data = response.json()
50
+ return data["choices"][0]["message"]["content"]
51
+ except Exception as e:
52
+ return f"Error: {str(e)}\n{response.text}"
53
+
54
+
55
+ def chat_interface(prompt, image, model_label):
56
+ model_id, _ = FREE_MODELS[model_label]
57
+ return query_openrouter_model(model_id, prompt, image)
58
+
59
+
60
+ with gr.Blocks(title="CrispChat") as demo:
61
+ gr.Markdown("""
62
+ # 🌟 CrispChat
63
+ Multi-modal chat with free OpenRouter models
64
+ """)
65
+
66
+ with gr.Row():
67
+ prompt = gr.Textbox(label="Enter your message", lines=4, placeholder="Ask me anything...")
68
+ image = gr.Image(type="filepath", label="Optional image input")
69
+
70
+ model_choice = gr.Dropdown(
71
+ choices=list(FREE_MODELS.keys()),
72
+ value="Google: Gemini Pro 2.5 Experimental (free)",
73
+ label="Select model"
74
+ )
75
+
76
+ output = gr.Textbox(label="Response", lines=6)
77
+
78
+ submit = gr.Button("Submit")
79
+ submit.click(fn=chat_interface, inputs=[prompt, image, model_choice], outputs=output)
80
 
81
  if __name__ == "__main__":
82
  demo.launch()