File size: 85,566 Bytes
a13c2bb 453c62c 1ca78b8 5e9023b 453c62c 547bcde a791178 cf6c1c3 5e9023b c96734b 453c62c 9dba8e1 547bcde 9dba8e1 453c62c 547bcde 9dba8e1 547bcde 9dba8e1 453c62c 547bcde 9dba8e1 547bcde 9dba8e1 453c62c 547bcde 9dba8e1 547bcde a13c2bb 547bcde 1ca78b8 547bcde a791178 547bcde 453c62c 547bcde 453c62c 9dba8e1 453c62c 9dba8e1 37f5ab3 5e9023b 453c62c 37f5ab3 5e9023b 453c62c 9dba8e1 453c62c 37f5ab3 5e9023b 453c62c 9dba8e1 453c62c 37f5ab3 5e9023b 453c62c 9dba8e1 453c62c 37f5ab3 5fd37a0 453c62c 547bcde 5fd37a0 453c62c 5fd37a0 453c62c 37f5ab3 a13c2bb 1ca78b8 547bcde 453c62c 547bcde 37f5ab3 547bcde a791178 cf6c1c3 547bcde a791178 547bcde a791178 547bcde 1b53c0d 547bcde 81d1619 5e9023b 453c62c 5e9023b a791178 5e9023b 9dba8e1 453c62c 5e9023b 3dc43a9 7050196 5e9023b 37f5ab3 453c62c 37f5ab3 547bcde 453c62c 9dba8e1 453c62c 37f5ab3 453c62c a791178 37f5ab3 5e9023b 37f5ab3 3dc43a9 37f5ab3 453c62c 5e9023b 37f5ab3 3dc43a9 37f5ab3 3dc43a9 37f5ab3 5e9023b a791178 7050196 3dc43a9 7050196 9dba8e1 547bcde cf6c1c3 547bcde a791178 547bcde 82b8835 547bcde a791178 547bcde a791178 547bcde a791178 547bcde a791178 547bcde a791178 547bcde a791178 547bcde a791178 547bcde a791178 6ee626f 547bcde 6ee626f a791178 547bcde a791178 547bcde a791178 547bcde a791178 9dba8e1 a791178 5e9023b a791178 37f5ab3 a791178 37f5ab3 9dba8e1 a791178 9dba8e1 5e9023b 9dba8e1 5e9023b 9dba8e1 32ae536 547bcde a791178 547bcde a791178 547bcde 9dba8e1 547bcde a791178 547bcde a791178 547bcde a791178 547bcde a791178 547bcde a791178 9dba8e1 a791178 9dba8e1 453c62c 9dba8e1 547bcde 453c62c 547bcde a791178 547bcde a791178 547bcde a791178 453c62c 547bcde 453c62c 547bcde 453c62c 547bcde 453c62c a791178 547bcde 453c62c a791178 547bcde a791178 453c62c a791178 453c62c 3dc43a9 453c62c 547bcde 453c62c 547bcde 453c62c 547bcde 453c62c 547bcde 453c62c 547bcde 453c62c 547bcde 453c62c 547bcde 453c62c 547bcde 453c62c 547bcde 453c62c 547bcde 453c62c 7050196 547bcde cf6c1c3 547bcde cf6c1c3 547bcde cf6c1c3 547bcde cf6c1c3 547bcde cf6c1c3 547bcde cf6c1c3 547bcde cf6c1c3 547bcde cf6c1c3 547bcde cf6c1c3 547bcde cf6c1c3 547bcde a791178 547bcde cf6c1c3 453c62c cf6c1c3 547bcde cf6c1c3 453c62c 547bcde 7050196 547bcde 7050196 547bcde 7050196 453c62c 547bcde 453c62c 547bcde 453c62c 547bcde 453c62c cf6c1c3 547bcde 453c62c 547bcde 453c62c 547bcde 453c62c 547bcde 453c62c a791178 453c62c 547bcde 453c62c 547bcde 453c62c 547bcde 453c62c 547bcde 453c62c a791178 453c62c 547bcde 453c62c 9dba8e1 453c62c c96734b cf6c1c3 a791178 cf6c1c3 a791178 cf6c1c3 453c62c a791178 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 |
import os
import gradio as gr
import requests
import json
import base64
import logging
import io
import time
from typing import List, Dict, Any, Union, Tuple, Optional
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Gracefully import libraries with fallbacks
try:
from PIL import Image
HAS_PIL = True
except ImportError:
logger.warning("PIL not installed. Image processing will be limited.")
HAS_PIL = False
try:
import PyPDF2
HAS_PYPDF2 = True
except ImportError:
logger.warning("PyPDF2 not installed. PDF processing will be limited.")
HAS_PYPDF2 = False
try:
import markdown
HAS_MARKDOWN = True
except ImportError:
logger.warning("Markdown not installed. Markdown processing will be limited.")
HAS_MARKDOWN = False
try:
import openai
HAS_OPENAI = True
except ImportError:
logger.warning("OpenAI package not installed. OpenAI models will be unavailable.")
HAS_OPENAI = False
try:
from groq import Groq
HAS_GROQ = True
except ImportError:
logger.warning("Groq client not installed. Groq API will be unavailable.")
HAS_GROQ = False
try:
import cohere
HAS_COHERE = True
except ImportError:
logger.warning("Cohere package not installed. Cohere models will be unavailable.")
HAS_COHERE = False
try:
from huggingface_hub import InferenceClient
HAS_HF = True
except ImportError:
logger.warning("HuggingFace hub not installed. HuggingFace models will be limited.")
HAS_HF = False
# API keys from environment
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "")
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "")
GROQ_API_KEY = os.environ.get("GROQ_API_KEY", "")
COHERE_API_KEY = os.environ.get("COHERE_API_KEY", "")
GLHF_API_KEY = os.environ.get("GLHF_API_KEY", "")
HF_API_KEY = os.environ.get("HF_API_KEY", "")
# ==========================================================
# MODEL DEFINITIONS
# ==========================================================
# OPENROUTER MODELS
# These are the original models from the provided code
OPENROUTER_MODELS = [
# 1M+ Context Models
{"category": "1M+ Context", "models": [
#("Google: Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free", 2000000),
("Google: Gemini 2.0 Flash Thinking Experimental 01-21", "google/gemini-2.0-flash-thinking-exp:free", 1048576),
("Google: Gemini Flash 2.0 Experimental", "google/gemini-2.0-flash-exp:free", 1048576),
("Google: Gemini Pro 2.5 Experimental", "google/gemini-2.5-pro-exp-03-25:free", 1000000),
("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 1000000),
]},
# 100K-1M Context Models
{"category": "100K+ Context", "models": [
("DeepSeek: DeepSeek R1 Zero", "deepseek/deepseek-r1-zero:free", 163840),
("DeepSeek: R1", "deepseek/deepseek-r1:free", 163840),
("DeepSeek: DeepSeek V3 Base", "deepseek/deepseek-v3-base:free", 131072),
("DeepSeek: DeepSeek V3 0324", "deepseek/deepseek-chat-v3-0324:free", 131072),
("Google: Gemma 3 4B", "google/gemma-3-4b-it:free", 131072),
("Google: Gemma 3 12B", "google/gemma-3-12b-it:free", 131072),
("Nous: DeepHermes 3 Llama 3 8B Preview", "nousresearch/deephermes-3-llama-3-8b-preview:free", 131072),
("Qwen: Qwen2.5 VL 72B Instruct", "qwen/qwen2.5-vl-72b-instruct:free", 131072),
("DeepSeek: DeepSeek V3", "deepseek/deepseek-chat:free", 131072),
("NVIDIA: Llama 3.1 Nemotron 70B Instruct", "nvidia/llama-3.1-nemotron-70b-instruct:free", 131072),
("Meta: Llama 3.2 1B Instruct", "meta-llama/llama-3.2-1b-instruct:free", 131072),
("Meta: Llama 3.2 11B Vision Instruct", "meta-llama/llama-3.2-11b-vision-instruct:free", 131072),
("Meta: Llama 3.1 8B Instruct", "meta-llama/llama-3.1-8b-instruct:free", 131072),
("Mistral: Mistral Nemo", "mistralai/mistral-nemo:free", 128000),
]},
# 64K-100K Context Models
{"category": "64K-100K Context", "models": [
("Mistral: Mistral Small 3.1 24B", "mistralai/mistral-small-3.1-24b-instruct:free", 96000),
("Google: Gemma 3 27B", "google/gemma-3-27b-it:free", 96000),
("Qwen: Qwen2.5 VL 3B Instruct", "qwen/qwen2.5-vl-3b-instruct:free", 64000),
("DeepSeek: R1 Distill Qwen 14B", "deepseek/deepseek-r1-distill-qwen-14b:free", 64000),
("Qwen: Qwen2.5-VL 7B Instruct", "qwen/qwen-2.5-vl-7b-instruct:free", 64000),
]},
# 32K-64K Context Models
{"category": "32K-64K Context", "models": [
("Google: LearnLM 1.5 Pro Experimental", "google/learnlm-1.5-pro-experimental:free", 40960),
("Qwen: QwQ 32B", "qwen/qwq-32b:free", 40000),
("Google: Gemini 2.0 Flash Thinking Experimental", "google/gemini-2.0-flash-thinking-exp-1219:free", 40000),
("Bytedance: UI-TARS 72B", "bytedance-research/ui-tars-72b:free", 32768),
("Qwerky 72b", "featherless/qwerky-72b:free", 32768),
("OlympicCoder 7B", "open-r1/olympiccoder-7b:free", 32768),
("OlympicCoder 32B", "open-r1/olympiccoder-32b:free", 32768),
("Google: Gemma 3 1B", "google/gemma-3-1b-it:free", 32768),
("Reka: Flash 3", "rekaai/reka-flash-3:free", 32768),
("Dolphin3.0 R1 Mistral 24B", "cognitivecomputations/dolphin3.0-r1-mistral-24b:free", 32768),
("Dolphin3.0 Mistral 24B", "cognitivecomputations/dolphin3.0-mistral-24b:free", 32768),
("Mistral: Mistral Small 3", "mistralai/mistral-small-24b-instruct-2501:free", 32768),
("Qwen2.5 Coder 32B Instruct", "qwen/qwen-2.5-coder-32b-instruct:free", 32768),
("Qwen2.5 72B Instruct", "qwen/qwen-2.5-72b-instruct:free", 32768),
]},
# 8K-32K Context Models
{"category": "8K-32K Context", "models": [
("Meta: Llama 3.2 3B Instruct", "meta-llama/llama-3.2-3b-instruct:free", 20000),
("Qwen: QwQ 32B Preview", "qwen/qwq-32b-preview:free", 16384),
("DeepSeek: R1 Distill Qwen 32B", "deepseek/deepseek-r1-distill-qwen-32b:free", 16000),
("Qwen: Qwen2.5 VL 32B Instruct", "qwen/qwen2.5-vl-32b-instruct:free", 8192),
("Moonshot AI: Moonlight 16B A3B Instruct", "moonshotai/moonlight-16b-a3b-instruct:free", 8192),
("DeepSeek: R1 Distill Llama 70B", "deepseek/deepseek-r1-distill-llama-70b:free", 8192),
("Qwen 2 7B Instruct", "qwen/qwen-2-7b-instruct:free", 8192),
("Google: Gemma 2 9B", "google/gemma-2-9b-it:free", 8192),
("Mistral: Mistral 7B Instruct", "mistralai/mistral-7b-instruct:free", 8192),
("Microsoft: Phi-3 Mini 128K Instruct", "microsoft/phi-3-mini-128k-instruct:free", 8192),
("Microsoft: Phi-3 Medium 128K Instruct", "microsoft/phi-3-medium-128k-instruct:free", 8192),
("Meta: Llama 3 8B Instruct", "meta-llama/llama-3-8b-instruct:free", 8192),
("OpenChat 3.5 7B", "openchat/openchat-7b:free", 8192),
("Meta: Llama 3.3 70B Instruct", "meta-llama/llama-3.3-70b-instruct:free", 8000),
]},
# <8K Context Models
{"category": "4K Context", "models": [
("AllenAI: Molmo 7B D", "allenai/molmo-7b-d:free", 4096),
("Rogue Rose 103B v0.2", "sophosympatheia/rogue-rose-103b-v0.2:free", 4096),
("Toppy M 7B", "undi95/toppy-m-7b:free", 4096),
("Hugging Face: Zephyr 7B", "huggingfaceh4/zephyr-7b-beta:free", 4096),
("MythoMax 13B", "gryphe/mythomax-l2-13b:free", 4096),
]},
# Vision-capable Models
{"category": "Vision Models", "models": [
#("Google: Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free", 2000000),
("Google: Gemini 2.0 Flash Thinking Experimental 01-21", "google/gemini-2.0-flash-thinking-exp:free", 1048576),
("Google: Gemini Flash 2.0 Experimental", "google/gemini-2.0-flash-exp:free", 1048576),
("Google: Gemini Pro 2.5 Experimental", "google/gemini-2.5-pro-exp-03-25:free", 1000000),
("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 1000000),
("Google: Gemma 3 4B", "google/gemma-3-4b-it:free", 131072),
("Google: Gemma 3 12B", "google/gemma-3-12b-it:free", 131072),
("Qwen: Qwen2.5 VL 72B Instruct", "qwen/qwen2.5-vl-72b-instruct:free", 131072),
("Meta: Llama 3.2 11B Vision Instruct", "meta-llama/llama-3.2-11b-vision-instruct:free", 131072),
("Mistral: Mistral Small 3.1 24B", "mistralai/mistral-small-3.1-24b-instruct:free", 96000),
("Google: Gemma 3 27B", "google/gemma-3-27b-it:free", 96000),
("Qwen: Qwen2.5 VL 3B Instruct", "qwen/qwen2.5-vl-3b-instruct:free", 64000),
("Qwen: Qwen2.5-VL 7B Instruct", "qwen/qwen-2.5-vl-7b-instruct:free", 64000),
("Google: LearnLM 1.5 Pro Experimental", "google/learnlm-1.5-pro-experimental:free", 40960),
("Google: Gemini 2.0 Flash Thinking Experimental", "google/gemini-2.0-flash-thinking-exp-1219:free", 40000),
("Bytedance: UI-TARS 72B", "bytedance-research/ui-tars-72b:free", 32768),
("Google: Gemma 3 1B", "google/gemma-3-1b-it:free", 32768),
("Qwen: Qwen2.5 VL 32B Instruct", "qwen/qwen2.5-vl-32b-instruct:free", 8192),
("AllenAI: Molmo 7B D", "allenai/molmo-7b-d:free", 4096),
]},
]
# Flatten OpenRouter model list for easier access
OPENROUTER_ALL_MODELS = []
for category in OPENROUTER_MODELS:
for model in category["models"]:
if model not in OPENROUTER_ALL_MODELS: # Avoid duplicates
OPENROUTER_ALL_MODELS.append(model)
# OPENAI MODELS
OPENAI_MODELS = {
"gpt-3.5-turbo": 16385,
"gpt-3.5-turbo-0125": 16385,
"gpt-3.5-turbo-1106": 16385,
"gpt-3.5-turbo-instruct": 4096,
"gpt-4": 8192,
"gpt-4-0314": 8192,
"gpt-4-0613": 8192,
"gpt-4-turbo": 128000,
"gpt-4-turbo-2024-04-09": 128000,
"gpt-4-turbo-preview": 128000,
"gpt-4-0125-preview": 128000,
"gpt-4-1106-preview": 128000,
"gpt-4o": 128000,
"gpt-4o-2024-11-20": 128000,
"gpt-4o-2024-08-06": 128000,
"gpt-4o-2024-05-13": 128000,
"chatgpt-4o-latest": 128000,
"gpt-4o-mini": 128000,
"gpt-4o-mini-2024-07-18": 128000,
"gpt-4o-realtime-preview": 128000,
"gpt-4o-realtime-preview-2024-10-01": 128000,
"gpt-4o-audio-preview": 128000,
"gpt-4o-audio-preview-2024-10-01": 128000,
"o1-preview": 128000,
"o1-preview-2024-09-12": 128000,
"o1-mini": 128000,
"o1-mini-2024-09-12": 128000,
}
# HUGGINGFACE MODELS
HUGGINGFACE_MODELS = {
"microsoft/phi-3-mini-4k-instruct": 4096,
"microsoft/Phi-3-mini-128k-instruct": 131072,
"HuggingFaceH4/zephyr-7b-beta": 8192,
"deepseek-ai/DeepSeek-Coder-V2-Instruct": 8192,
"mistralai/Mistral-7B-Instruct-v0.3": 32768,
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": 32768,
"microsoft/Phi-3.5-mini-instruct": 4096,
"HuggingFaceTB/SmolLM2-1.7B-Instruct": 2048,
"google/gemma-2-2b-it": 2048,
"openai-community/gpt2": 1024,
"microsoft/phi-2": 2048,
"TinyLlama/TinyLlama-1.1B-Chat-v1.0": 2048,
"VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct": 2048,
"VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct": 4096,
"VAGOsolutions/SauerkrautLM-Nemo-12b-Instruct": 4096,
"openGPT-X/Teuken-7B-instruct-research-v0.4": 4096,
"Qwen/Qwen2.5-7B-Instruct": 131072,
"tiiuae/falcon-7b-instruct": 8192,
"Qwen/QwQ-32B-preview": 32768,
}
# GROQ MODELS - We'll populate this dynamically
DEFAULT_GROQ_MODELS = {
"gemma2-9b-it": 8192,
"gemma-7b-it": 8192,
"llama-3.3-70b-versatile": 131072,
"llama-3.1-70b-versatile": 131072,
"llama-3.1-8b-instant": 131072,
"llama-guard-3-8b": 8192,
"llama3-70b-8192": 8192,
"llama3-8b-8192": 8192,
"mixtral-8x7b-32768": 32768,
"llama3-groq-70b-8192-tool-use-preview": 8192,
"llama3-groq-8b-8192-tool-use-preview": 8192,
"llama-3.3-70b-specdec": 131072,
"llama-3.1-70b-specdec": 131072,
"llama-3.2-1b-preview": 131072,
"llama-3.2-3b-preview": 131072,
}
# COHERE MODELS
COHERE_MODELS = {
"command-r-plus-08-2024": 131072,
"command-r-plus-04-2024": 131072,
"command-r-plus": 131072,
"command-r-08-2024": 131072,
"command-r-03-2024": 131072,
"command-r": 131072,
"command": 4096,
"command-nightly": 131072,
"command-light": 4096,
"command-light-nightly": 4096,
"c4ai-aya-expanse-8b": 8192,
"c4ai-aya-expanse-32b": 131072,
}
# GLHF MODELS
GLHF_MODELS = {
"mistralai/Mixtral-8x7B-Instruct-v0.1": 32768,
"01-ai/Yi-34B-Chat": 32768,
"mistralai/Mistral-7B-Instruct-v0.3": 32768,
"microsoft/phi-3-mini-4k-instruct": 4096,
"microsoft/Phi-3.5-mini-instruct": 4096,
"microsoft/Phi-3-mini-128k-instruct": 131072,
"HuggingFaceH4/zephyr-7b-beta": 8192,
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": 32768,
"google/gemma-2-2b-it": 2048,
"microsoft/phi-2": 2048,
}
# ==========================================================
# HELPER FUNCTIONS
# ==========================================================
def fetch_groq_models():
"""Fetch available Groq models with proper error handling"""
try:
if not HAS_GROQ or not GROQ_API_KEY:
logger.warning("Groq client not available or no API key. Using default model list.")
return DEFAULT_GROQ_MODELS
client = Groq(api_key=GROQ_API_KEY)
models = client.models.list()
# Create dictionary of model_id -> context size
model_dict = {}
for model in models.data:
model_id = model.id
# Map known context sizes or use a default
if "llama-3" in model_id and "70b" in model_id:
context_size = 131072
elif "llama-3" in model_id and "8b" in model_id:
context_size = 131072
elif "mixtral" in model_id:
context_size = 32768
elif "gemma" in model_id:
context_size = 8192
else:
context_size = 8192 # Default assumption
model_dict[model_id] = context_size
# Ensure we have models by combining with defaults
if not model_dict:
return DEFAULT_GROQ_MODELS
return {**DEFAULT_GROQ_MODELS, **model_dict}
except Exception as e:
logger.error(f"Error fetching Groq models: {e}")
return DEFAULT_GROQ_MODELS
# Initialize Groq models
GROQ_MODELS = fetch_groq_models()
def encode_image_to_base64(image_path):
"""Encode an image file to base64 string"""
try:
if isinstance(image_path, str): # File path as string
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
file_extension = image_path.split('.')[-1].lower()
mime_type = f"image/{file_extension}"
if file_extension in ["jpg", "jpeg"]:
mime_type = "image/jpeg"
elif file_extension == "png":
mime_type = "image/png"
elif file_extension == "webp":
mime_type = "image/webp"
return f"data:{mime_type};base64,{encoded_string}"
elif hasattr(image_path, 'name'): # Handle Gradio file objects directly
with open(image_path.name, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
file_extension = image_path.name.split('.')[-1].lower()
mime_type = f"image/{file_extension}"
if file_extension in ["jpg", "jpeg"]:
mime_type = "image/jpeg"
elif file_extension == "png":
mime_type = "image/png"
elif file_extension == "webp":
mime_type = "image/webp"
return f"data:{mime_type};base64,{encoded_string}"
else: # Handle file object or other types
logger.error(f"Unsupported image type: {type(image_path)}")
return None
except Exception as e:
logger.error(f"Error encoding image: {str(e)}")
return None
def extract_text_from_file(file_path):
"""Extract text from various file types"""
try:
file_extension = file_path.split('.')[-1].lower()
if file_extension == 'pdf':
if HAS_PYPDF2:
text = ""
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
text += page.extract_text() + "\n\n"
return text
else:
return "PDF processing is not available (PyPDF2 not installed)"
elif file_extension == 'md':
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
elif file_extension == 'txt':
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
else:
return f"Unsupported file type: {file_extension}"
except Exception as e:
logger.error(f"Error extracting text from file: {str(e)}")
return f"Error processing file: {str(e)}"
def prepare_message_with_media(text, images=None, documents=None):
"""Prepare a message with text, images, and document content"""
# If no media, return text only
if not images and not documents:
return text
# Start with text content
if documents and len(documents) > 0:
# If there are documents, append their content to the text
document_texts = []
for doc in documents:
if doc is None:
continue
# Make sure to handle file objects properly
doc_path = doc.name if hasattr(doc, 'name') else doc
doc_text = extract_text_from_file(doc_path)
if doc_text:
document_texts.append(doc_text)
# Add document content to text
if document_texts:
if not text:
text = "Please analyze these documents:"
else:
text = f"{text}\n\nDocument content:\n\n"
text += "\n\n".join(document_texts)
# If no images, return text only
if not images:
return text
# If we have images, create a multimodal content array
content = [{"type": "text", "text": text}]
# Add images if any
if images:
# Check if images is a list of image paths or file objects
if isinstance(images, list):
for img in images:
if img is None:
continue
encoded_image = encode_image_to_base64(img)
if encoded_image:
content.append({
"type": "image_url",
"image_url": {"url": encoded_image}
})
else:
# For single image or Gallery component
logger.warning(f"Images is not a list: {type(images)}")
# Try to handle as single image
encoded_image = encode_image_to_base64(images)
if encoded_image:
content.append({
"type": "image_url",
"image_url": {"url": encoded_image}
})
return content
def format_to_message_dict(history):
"""Convert history to proper message format"""
messages = []
for pair in history:
if len(pair) == 2:
human, ai = pair
if human:
messages.append({"role": "user", "content": human})
if ai:
messages.append({"role": "assistant", "content": ai})
return messages
def process_uploaded_images(files):
"""Process uploaded image files"""
file_paths = []
for file in files:
if hasattr(file, 'name'):
file_paths.append(file.name)
return file_paths
def filter_models(provider, search_term):
"""Filter models based on search term and provider"""
if provider == "OpenRouter":
all_models = [model[0] for model in OPENROUTER_ALL_MODELS]
elif provider == "OpenAI":
all_models = list(OPENAI_MODELS.keys())
elif provider == "HuggingFace":
all_models = list(HUGGINGFACE_MODELS.keys())
elif provider == "Groq":
all_models = list(GROQ_MODELS.keys())
elif provider == "Cohere":
all_models = list(COHERE_MODELS.keys())
elif provider == "GLHF":
all_models = list(GLHF_MODELS.keys())
else:
return [], None
if not search_term:
return all_models, all_models[0] if all_models else None
filtered_models = [model for model in all_models if search_term.lower() in model.lower()]
if filtered_models:
return filtered_models, filtered_models[0]
else:
return all_models, all_models[0] if all_models else None
def get_model_info(provider, model_choice):
"""Get model ID and context size based on provider and model name"""
if provider == "OpenRouter":
for name, model_id, ctx_size in OPENROUTER_ALL_MODELS:
if name == model_choice:
return model_id, ctx_size
elif provider == "OpenAI":
if model_choice in OPENAI_MODELS:
return model_choice, OPENAI_MODELS[model_choice]
elif provider == "HuggingFace":
if model_choice in HUGGINGFACE_MODELS:
return model_choice, HUGGINGFACE_MODELS[model_choice]
elif provider == "Groq":
if model_choice in GROQ_MODELS:
return model_choice, GROQ_MODELS[model_choice]
elif provider == "Cohere":
if model_choice in COHERE_MODELS:
return model_choice, COHERE_MODELS[model_choice]
elif provider == "GLHF":
if model_choice in GLHF_MODELS:
return model_choice, GLHF_MODELS[model_choice]
return None, 0
def update_context_display(provider, model_name):
"""Update context size display for the selected model"""
_, ctx_size = get_model_info(provider, model_name)
return f"{ctx_size:,}" if ctx_size else "Unknown"
def update_model_info(provider, model_name):
"""Generate HTML info display for the selected model"""
model_id, ctx_size = get_model_info(provider, model_name)
if not model_id:
return "<p>Model information not available</p>"
# Check if this is a vision model
is_vision_model = False
# For OpenRouter, check the vision models category
if provider == "OpenRouter":
for cat in OPENROUTER_MODELS:
if cat["category"] == "Vision Models":
if any(m[0] == model_name for m in cat["models"]):
is_vision_model = True
break
# For other providers, use heuristics
elif provider == "OpenAI" and any(x in model_name.lower() for x in ["gpt-4", "gpt-4o"]):
is_vision_model = True
elif provider == "HuggingFace" and any(x in model_name.lower() for x in ["vl", "vision"]):
is_vision_model = True
vision_badge = '<span style="background-color: #4CAF50; color: white; padding: 3px 6px; border-radius: 3px; font-size: 0.8em; margin-left: 5px;">Vision</span>' if is_vision_model else ''
# For OpenRouter, show the model ID
model_id_html = f"<p><strong>Model ID:</strong> {model_id}</p>" if provider == "OpenRouter" else ""
# For others, the ID is the same as the name
if provider != "OpenRouter":
model_id_html = ""
return f"""
<div class="model-info">
<h3>{model_name} {vision_badge}</h3>
{model_id_html}
<p><strong>Context Size:</strong> {ctx_size:,} tokens</p>
<p><strong>Provider:</strong> {provider}</p>
{f'<p><strong>Features:</strong> Supports image understanding</p>' if is_vision_model else ''}
</div>
"""
# ==========================================================
# API HANDLERS
# ==========================================================
def call_openrouter_api(payload, api_key_override=None):
"""Make a call to OpenRouter API with error handling"""
try:
api_key = api_key_override if api_key_override else OPENROUTER_API_KEY
if not api_key:
raise ValueError("OpenRouter API key is required")
response = requests.post(
"https://openrouter.ai/api/v1/chat/completions",
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}",
"HTTP-Referer": "https://huggingface.co/spaces/user/MultiProviderCrispChat"
},
json=payload,
timeout=180 # Longer timeout for document processing
)
return response
except requests.RequestException as e:
logger.error(f"OpenRouter API request error: {str(e)}")
raise e
def call_openai_api(payload, api_key_override=None):
"""Make a call to OpenAI API with error handling"""
try:
if not HAS_OPENAI:
raise ImportError("OpenAI package not installed")
api_key = api_key_override if api_key_override else OPENAI_API_KEY
if not api_key:
raise ValueError("OpenAI API key is required")
client = openai.OpenAI(api_key=api_key)
# Extract parameters from payload
model = payload.get("model", "gpt-3.5-turbo")
messages = payload.get("messages", [])
temperature = payload.get("temperature", 0.7)
max_tokens = payload.get("max_tokens", 1000)
stream = payload.get("stream", False)
top_p = payload.get("top_p", 0.9)
presence_penalty = payload.get("presence_penalty", 0)
frequency_penalty = payload.get("frequency_penalty", 0)
# Handle response format if specified
response_format = None
if payload.get("response_format") == "json_object":
response_format = {"type": "json_object"}
# Create completion
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
stream=stream,
top_p=top_p,
presence_penalty=presence_penalty,
frequency_penalty=frequency_penalty,
response_format=response_format
)
return response
except Exception as e:
logger.error(f"OpenAI API error: {str(e)}")
raise e
def call_huggingface_api(payload, api_key_override=None):
"""Make a call to HuggingFace API with error handling"""
try:
if not HAS_HF:
raise ImportError("HuggingFace hub not installed")
api_key = api_key_override if api_key_override else HF_API_KEY
# Extract parameters from payload
model_id = payload.get("model", "mistralai/Mistral-7B-Instruct-v0.3")
messages = payload.get("messages", [])
temperature = payload.get("temperature", 0.7)
max_tokens = payload.get("max_tokens", 500)
# Create a prompt from messages
prompt = ""
for msg in messages:
role = msg["role"].upper()
content = msg["content"]
# Handle multimodal content
if isinstance(content, list):
text_parts = []
for item in content:
if item["type"] == "text":
text_parts.append(item["text"])
content = "\n".join(text_parts)
prompt += f"{role}: {content}\n"
prompt += "ASSISTANT: "
# Create client with or without API key
client = InferenceClient(token=api_key) if api_key else InferenceClient()
# Generate response
response = client.text_generation(
prompt,
model=model_id,
max_new_tokens=max_tokens,
temperature=temperature,
repetition_penalty=1.1
)
return {"generated_text": str(response)}
except Exception as e:
logger.error(f"HuggingFace API error: {str(e)}")
raise e
def call_groq_api(payload, api_key_override=None):
"""Make a call to Groq API with error handling"""
try:
if not HAS_GROQ:
raise ImportError("Groq client not installed")
api_key = api_key_override if api_key_override else GROQ_API_KEY
if not api_key:
raise ValueError("Groq API key is required")
client = Groq(api_key=api_key)
# Extract parameters from payload
model = payload.get("model", "llama-3.1-8b-instant")
messages = payload.get("messages", [])
temperature = payload.get("temperature", 0.7)
max_tokens = payload.get("max_tokens", 1000)
stream = payload.get("stream", False)
top_p = payload.get("top_p", 0.9)
# Create completion
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
stream=stream,
top_p=top_p
)
return response
except Exception as e:
logger.error(f"Groq API error: {str(e)}")
raise e
def call_cohere_api(payload, api_key_override=None):
"""Make a call to Cohere API with error handling"""
try:
if not HAS_COHERE:
raise ImportError("Cohere package not installed")
api_key = api_key_override if api_key_override else COHERE_API_KEY
if not api_key:
raise ValueError("Cohere API key is required")
client = cohere.Client(api_key=api_key)
# Extract parameters from payload
model = payload.get("model", "command-r-plus")
messages = payload.get("messages", [])
temperature = payload.get("temperature", 0.7)
max_tokens = payload.get("max_tokens", 1000)
# Format messages for Cohere
chat_history = []
user_message = ""
for msg in messages:
if msg["role"] == "system":
# For system message, we'll prepend to the user's first message
system_content = msg["content"]
if isinstance(system_content, list): # Handle multimodal content
system_parts = []
for item in system_content:
if item["type"] == "text":
system_parts.append(item["text"])
system_content = "\n".join(system_parts)
user_message = f"System: {system_content}\n\n" + user_message
elif msg["role"] == "user":
content = msg["content"]
# Handle multimodal content
if isinstance(content, list):
text_parts = []
for item in content:
if item["type"] == "text":
text_parts.append(item["text"])
content = "\n".join(text_parts)
user_message = content
elif msg["role"] == "assistant":
content = msg["content"]
if content:
chat_history.append({"role": "ASSISTANT", "message": content})
# Create chat completion
response = client.chat(
message=user_message,
chat_history=chat_history,
model=model,
temperature=temperature,
max_tokens=max_tokens
)
return response
except Exception as e:
logger.error(f"Cohere API error: {str(e)}")
raise e
def call_glhf_api(payload, api_key_override=None):
"""Make a call to GLHF API with error handling"""
try:
if not HAS_OPENAI:
raise ImportError("OpenAI package not installed (required for GLHF API)")
api_key = api_key_override if api_key_override else GLHF_API_KEY
if not api_key:
raise ValueError("GLHF API key is required")
client = openai.OpenAI(
api_key=api_key,
base_url="https://glhf.chat/api/openai/v1"
)
# Extract parameters from payload
model_name = payload.get("model", "mistralai/Mistral-7B-Instruct-v0.3")
# Add "hf:" prefix if not already there
if not model_name.startswith("hf:"):
model = f"hf:{model_name}"
else:
model = model_name
messages = payload.get("messages", [])
temperature = payload.get("temperature", 0.7)
max_tokens = payload.get("max_tokens", 1000)
stream = payload.get("stream", False)
# Create completion
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
stream=stream
)
return response
except Exception as e:
logger.error(f"GLHF API error: {str(e)}")
raise e
def extract_ai_response(result, provider):
"""Extract AI response based on provider format"""
try:
if provider == "OpenRouter":
if isinstance(result, dict):
if "choices" in result and len(result["choices"]) > 0:
if "message" in result["choices"][0]:
message = result["choices"][0]["message"]
if message.get("reasoning") and not message.get("content"):
reasoning = message.get("reasoning")
lines = reasoning.strip().split('\n')
for line in lines:
if line and not line.startswith('I should') and not line.startswith('Let me'):
return line.strip()
for line in lines:
if line.strip():
return line.strip()
return message.get("content", "")
elif "delta" in result["choices"][0]:
return result["choices"][0]["delta"].get("content", "")
elif provider == "OpenAI":
if hasattr(result, "choices") and len(result.choices) > 0:
return result.choices[0].message.content
elif provider == "HuggingFace":
return result.get("generated_text", "")
elif provider == "Groq":
if hasattr(result, "choices") and len(result.choices) > 0:
return result.choices[0].message.content
elif provider == "Cohere":
if hasattr(result, "text"):
return result.text
elif provider == "GLHF":
if hasattr(result, "choices") and len(result.choices) > 0:
return result.choices[0].message.content
logger.error(f"Unexpected response structure from {provider}: {result}")
return f"Error: Could not extract response from {provider} API result"
except Exception as e:
logger.error(f"Error extracting AI response: {str(e)}")
return f"Error: {str(e)}"
# ==========================================================
# STREAMING HANDLERS
# ==========================================================
def openrouter_streaming_handler(response, chatbot, message_idx, message):
try:
# First add the user message if needed
if len(chatbot) == message_idx:
chatbot.append([message, ""])
for line in response.iter_lines():
if not line:
continue
line = line.decode('utf-8')
if not line.startswith('data: '):
continue
data = line[6:]
if data.strip() == '[DONE]':
break
try:
chunk = json.loads(data)
if "choices" in chunk and len(chunk["choices"]) > 0:
delta = chunk["choices"][0].get("delta", {})
if "content" in delta and delta["content"]:
# Update the current response
chatbot[-1][1] += delta["content"]
yield chatbot
except json.JSONDecodeError:
logger.error(f"Failed to parse JSON from chunk: {data}")
except Exception as e:
logger.error(f"Error in streaming handler: {str(e)}")
# Add error message to the current response
if len(chatbot) > message_idx:
chatbot[-1][1] += f"\n\nError during streaming: {str(e)}"
yield chatbot
def openai_streaming_handler(response, chatbot, message_idx, message):
try:
# First add the user message if needed
if len(chatbot) == message_idx:
chatbot.append([message, ""])
full_response = ""
for chunk in response:
if hasattr(chunk.choices[0].delta, "content") and chunk.choices[0].delta.content is not None:
content = chunk.choices[0].delta.content
full_response += content
chatbot[-1][1] = full_response
yield chatbot
except Exception as e:
logger.error(f"Error in OpenAI streaming handler: {str(e)}")
# Add error message to the current response
chatbot[-1][1] += f"\n\nError during streaming: {str(e)}"
yield chatbot
def groq_streaming_handler(response, chatbot, message_idx, message):
try:
# First add the user message if needed
if len(chatbot) == message_idx:
chatbot.append([message, ""])
full_response = ""
for chunk in response:
if hasattr(chunk.choices[0].delta, "content") and chunk.choices[0].delta.content is not None:
content = chunk.choices[0].delta.content
full_response += content
chatbot[-1][1] = full_response
yield chatbot
except Exception as e:
logger.error(f"Error in Groq streaming handler: {str(e)}")
# Add error message to the current response
chatbot[-1][1] += f"\n\nError during streaming: {str(e)}"
yield chatbot
def glhf_streaming_handler(response, chatbot, message_idx, message):
try:
# First add the user message if needed
if len(chatbot) == message_idx:
chatbot.append([message, ""])
full_response = ""
for chunk in response:
if hasattr(chunk.choices[0].delta, "content") and chunk.choices[0].delta.content is not None:
content = chunk.choices[0].delta.content
full_response += content
chatbot[-1][1] = full_response
yield chatbot
except Exception as e:
logger.error(f"Error in GLHF streaming handler: {str(e)}")
# Add error message to the current response
chatbot[-1][1] += f"\n\nError during streaming: {str(e)}"
yield chatbot
# ==========================================================
# MAIN FUNCTION TO ASK AI
# ==========================================================
def ask_ai(message, history, provider, model_choice, temperature, max_tokens, top_p,
frequency_penalty, presence_penalty, repetition_penalty, top_k, min_p,
seed, top_a, stream_output, response_format, images, documents,
reasoning_effort, system_message, transforms, api_key_override=None):
"""Enhanced AI query function with support for multiple providers"""
# Validate input
if not message.strip() and not images and not documents:
return history
# Copy history to new list to avoid modifying the original
chat_history = list(history)
# Create messages from chat history
messages = format_to_message_dict(chat_history)
# Add system message if provided
if system_message and system_message.strip():
# Remove any existing system message
messages = [msg for msg in messages if msg.get("role") != "system"]
# Add new system message at the beginning
messages.insert(0, {"role": "system", "content": system_message.strip()})
# Prepare message with images and documents if any
content = prepare_message_with_media(message, images, documents)
# Add current message
messages.append({"role": "user", "content": content})
# Common parameters for all providers
common_params = {
"temperature": temperature,
"max_tokens": max_tokens,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
"presence_penalty": presence_penalty,
"stream": stream_output
}
try:
# Process based on provider
if provider == "OpenRouter":
# Get model ID from registry
model_id, _ = get_model_info(provider, model_choice)
if not model_id:
error_message = f"Error: Model '{model_choice}' not found in OpenRouter"
chat_history.append([message, error_message])
return chat_history
# Build OpenRouter payload
payload = {
"model": model_id,
"messages": messages,
**common_params
}
# Add optional parameters if set
if repetition_penalty != 1.0:
payload["repetition_penalty"] = repetition_penalty
if top_k > 0:
payload["top_k"] = top_k
if min_p > 0:
payload["min_p"] = min_p
if seed > 0:
payload["seed"] = seed
if top_a > 0:
payload["top_a"] = top_a
# Add response format if JSON is requested
if response_format == "json_object":
payload["response_format"] = {"type": "json_object"}
# Add reasoning if selected
if reasoning_effort != "none":
payload["reasoning"] = {
"effort": reasoning_effort
}
# Add transforms if selected
if transforms:
payload["transforms"] = transforms
# Call OpenRouter API
logger.info(f"Sending request to OpenRouter model: {model_id}")
response = call_openrouter_api(payload, api_key_override)
# Handle streaming response
if stream_output and response.status_code == 200:
# Add empty response slot to history
chat_history.append([message, ""])
# Set up generator for streaming updates
def streaming_generator():
for updated_history in openrouter_streaming_handler(response, chat_history, len(chat_history) - 1, message):
yield updated_history
return streaming_generator()
# Handle normal response
elif response.status_code == 200:
result = response.json()
logger.info(f"Response content: {result}")
# Extract AI response
ai_response = extract_ai_response(result, provider)
# Add response to history
chat_history.append([message, ai_response])
return chat_history
# Handle error response
else:
error_message = f"Error: Status code {response.status_code}"
try:
response_data = response.json()
error_message += f"\n\nDetails: {json.dumps(response_data, indent=2)}"
except:
error_message += f"\n\nResponse: {response.text}"
logger.error(error_message)
chat_history.append([message, error_message])
return chat_history
elif provider == "OpenAI":
# Get model ID from registry
model_id, _ = get_model_info(provider, model_choice)
if not model_id:
error_message = f"Error: Model '{model_choice}' not found in OpenAI"
chat_history.append([message, error_message])
return chat_history
# Build OpenAI payload
payload = {
"model": model_id,
"messages": messages,
**common_params
}
# Add response format if JSON is requested
if response_format == "json_object":
payload["response_format"] = {"type": "json_object"}
# Call OpenAI API
logger.info(f"Sending request to OpenAI model: {model_id}")
try:
response = call_openai_api(payload, api_key_override)
# Handle streaming response
if stream_output:
# Add empty response slot to history
chat_history.append([message, ""])
# Set up generator for streaming updates
def streaming_generator():
for updated_history in openai_streaming_handler(response, chat_history, len(chat_history) - 1, message):
yield updated_history
return streaming_generator()
# Handle normal response
else:
ai_response = extract_ai_response(response, provider)
chat_history.append([message, ai_response])
return chat_history
except Exception as e:
error_message = f"OpenAI API Error: {str(e)}"
logger.error(error_message)
chat_history.append([message, error_message])
return chat_history
elif provider == "HuggingFace":
# Get model ID from registry
model_id, _ = get_model_info(provider, model_choice)
if not model_id:
error_message = f"Error: Model '{model_choice}' not found in HuggingFace"
chat_history.append([message, error_message])
return chat_history
# Build HuggingFace payload
payload = {
"model": model_id,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens
}
# Call HuggingFace API
logger.info(f"Sending request to HuggingFace model: {model_id}")
try:
response = call_huggingface_api(payload, api_key_override)
# Extract response
ai_response = extract_ai_response(response, provider)
chat_history.append([message, ai_response])
return chat_history
except Exception as e:
error_message = f"HuggingFace API Error: {str(e)}"
logger.error(error_message)
chat_history.append([message, error_message])
return chat_history
elif provider == "Groq":
# Get model ID from registry
model_id, _ = get_model_info(provider, model_choice)
if not model_id:
error_message = f"Error: Model '{model_choice}' not found in Groq"
chat_history.append([message, error_message])
return chat_history
# Build Groq payload
payload = {
"model": model_id,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens,
"top_p": top_p,
"stream": stream_output
}
# Call Groq API
logger.info(f"Sending request to Groq model: {model_id}")
try:
response = call_groq_api(payload, api_key_override)
# Handle streaming response
if stream_output:
# Add empty response slot to history
chat_history.append([message, ""])
# Set up generator for streaming updates
def streaming_generator():
for updated_history in groq_streaming_handler(response, chat_history, len(chat_history) - 1, message):
yield updated_history
return streaming_generator()
# Handle normal response
else:
ai_response = extract_ai_response(response, provider)
chat_history.append([message, ai_response])
return chat_history
except Exception as e:
error_message = f"Groq API Error: {str(e)}"
logger.error(error_message)
chat_history.append([message, error_message])
return chat_history
elif provider == "Cohere":
# Get model ID from registry
model_id, _ = get_model_info(provider, model_choice)
if not model_id:
error_message = f"Error: Model '{model_choice}' not found in Cohere"
chat_history.append([message, error_message])
return chat_history
# Build Cohere payload (doesn't support streaming the same way)
payload = {
"model": model_id,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens
}
# Call Cohere API
logger.info(f"Sending request to Cohere model: {model_id}")
try:
response = call_cohere_api(payload, api_key_override)
# Extract response
ai_response = extract_ai_response(response, provider)
chat_history.append([message, ai_response])
return chat_history
except Exception as e:
error_message = f"Cohere API Error: {str(e)}"
logger.error(error_message)
chat_history.append([message, error_message])
return chat_history
elif provider == "GLHF":
# Get model ID from registry
model_id, _ = get_model_info(provider, model_choice)
if not model_id:
error_message = f"Error: Model '{model_choice}' not found in GLHF"
chat_history.append([message, error_message])
return chat_history
# Build GLHF payload
payload = {
"model": model_id, # The hf: prefix will be added in the API call
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens,
"stream": stream_output
}
# Call GLHF API
logger.info(f"Sending request to GLHF model: {model_id}")
try:
response = call_glhf_api(payload, api_key_override)
# Handle streaming response
if stream_output:
# Add empty response slot to history
chat_history.append([message, ""])
# Set up generator for streaming updates
def streaming_generator():
for updated_history in glhf_streaming_handler(response, chat_history, len(chat_history) - 1, message):
yield updated_history
return streaming_generator()
# Handle normal response
else:
ai_response = extract_ai_response(response, provider)
chat_history.append([message, ai_response])
return chat_history
except Exception as e:
error_message = f"GLHF API Error: {str(e)}"
logger.error(error_message)
chat_history.append([message, error_message])
return chat_history
else:
error_message = f"Error: Unsupported provider '{provider}'"
chat_history.append([message, error_message])
return chat_history
except Exception as e:
error_message = f"Error: {str(e)}"
logger.error(f"Exception during API call: {error_message}")
chat_history.append([message, error_message])
return chat_history
def clear_chat():
"""Reset all inputs"""
return [], "", [], [], 0.7, 1000, 0.8, 0.0, 0.0, 1.0, 40, 0.1, 0, 0.0, False, "default", "none", "", []
# ==========================================================
# UI CREATION
# ==========================================================
def create_app():
"""Create the Multi-Provider CrispChat Gradio application"""
with gr.Blocks(
title="Multi-Provider CrispChat",
css="""
.context-size {
font-size: 0.9em;
color: #666;
margin-left: 10px;
}
footer { display: none !important; }
.model-selection-row {
display: flex;
align-items: center;
}
.parameter-grid {
display: grid;
grid-template-columns: 1fr 1fr;
gap: 10px;
}
.vision-badge {
background-color: #4CAF50;
color: white;
padding: 3px 6px;
border-radius: 3px;
font-size: 0.8em;
margin-left: 5px;
}
.provider-selection {
margin-bottom: 10px;
padding: 10px;
border-radius: 5px;
background-color: #f5f5f5;
}
"""
) as demo:
gr.Markdown("""
# 🤖 Multi-Provider CrispChat
Chat with AI models from multiple providers: OpenRouter, OpenAI, HuggingFace, Groq, Cohere, and GLHF.
""")
with gr.Row():
with gr.Column(scale=2):
# Chatbot interface
chatbot = gr.Chatbot(
height=500,
show_copy_button=True,
show_label=False,
avatar_images=(None, "https://upload.wikimedia.org/wikipedia/commons/0/04/ChatGPT_logo.svg"),
type="messages",
elem_id="chat-window"
)
with gr.Row():
message = gr.Textbox(
placeholder="Type your message here...",
label="Message",
lines=2,
elem_id="message-input",
scale=4
)
with gr.Row():
with gr.Column(scale=3):
submit_btn = gr.Button("Send", variant="primary", elem_id="send-btn")
with gr.Column(scale=1):
clear_btn = gr.Button("Clear Chat", variant="secondary")
with gr.Row():
# Image upload
with gr.Accordion("Upload Images (for vision models)", open=False):
images = gr.File(
label="Uploaded Images",
file_types=["image"],
file_count="multiple"
)
image_upload_btn = gr.UploadButton(
label="Upload Images",
file_types=["image"],
file_count="multiple"
)
# Document upload
with gr.Accordion("Upload Documents (PDF, MD, TXT)", open=False):
documents = gr.File(
label="Uploaded Documents",
file_types=[".pdf", ".md", ".txt"],
file_count="multiple"
)
with gr.Column(scale=1):
with gr.Group(elem_classes="provider-selection"):
gr.Markdown("### Provider Selection")
# Provider selection
provider_choice = gr.Radio(
choices=["OpenRouter", "OpenAI", "HuggingFace", "Groq", "Cohere", "GLHF"],
value="OpenRouter",
label="AI Provider"
)
# API key input
api_key_override = gr.Textbox(
placeholder="Override API key (leave empty to use environment variable)",
label="API Key Override",
type="password"
)
with gr.Group():
gr.Markdown("### Model Selection")
with gr.Row(elem_classes="model-selection-row"):
model_search = gr.Textbox(
placeholder="Search models...",
label="",
show_label=False
)
# Provider-specific model dropdowns
openrouter_model = gr.Dropdown(
choices=[model[0] for model in OPENROUTER_ALL_MODELS],
value=OPENROUTER_ALL_MODELS[0][0] if OPENROUTER_ALL_MODELS else None,
label="OpenRouter Model",
elem_id="openrouter-model-choice",
visible=True
)
openai_model = gr.Dropdown(
choices=list(OPENAI_MODELS.keys()),
value="gpt-3.5-turbo" if "gpt-3.5-turbo" in OPENAI_MODELS else None,
label="OpenAI Model",
elem_id="openai-model-choice",
visible=False
)
hf_model = gr.Dropdown(
choices=list(HUGGINGFACE_MODELS.keys()),
value="mistralai/Mistral-7B-Instruct-v0.3" if "mistralai/Mistral-7B-Instruct-v0.3" in HUGGINGFACE_MODELS else None,
label="HuggingFace Model",
elem_id="hf-model-choice",
visible=False
)
groq_model = gr.Dropdown(
choices=list(GROQ_MODELS.keys()),
value="llama-3.1-8b-instant" if "llama-3.1-8b-instant" in GROQ_MODELS else None,
label="Groq Model",
elem_id="groq-model-choice",
visible=False
)
cohere_model = gr.Dropdown(
choices=list(COHERE_MODELS.keys()),
value="command-r-plus" if "command-r-plus" in COHERE_MODELS else None,
label="Cohere Model",
elem_id="cohere-model-choice",
visible=False
)
glhf_model = gr.Dropdown(
choices=list(GLHF_MODELS.keys()),
value="mistralai/Mistral-7B-Instruct-v0.3" if "mistralai/Mistral-7B-Instruct-v0.3" in GLHF_MODELS else None,
label="GLHF Model",
elem_id="glhf-model-choice",
visible=False
)
context_display = gr.Textbox(
value=update_context_display("OpenRouter", OPENROUTER_ALL_MODELS[0][0]),
label="Context Size",
interactive=False,
elem_classes="context-size"
)
with gr.Accordion("Generation Parameters", open=False):
with gr.Group(elem_classes="parameter-grid"):
temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature"
)
max_tokens = gr.Slider(
minimum=100,
maximum=4000,
value=1000,
step=100,
label="Max Tokens"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.8,
step=0.1,
label="Top P"
)
frequency_penalty = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
)
presence_penalty = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Presence Penalty"
)
reasoning_effort = gr.Radio(
["none", "low", "medium", "high"],
value="none",
label="Reasoning Effort (OpenRouter)"
)
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
with gr.Column():
repetition_penalty = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
label="Repetition Penalty"
)
top_k = gr.Slider(
minimum=1,
maximum=100,
value=40,
step=1,
label="Top K"
)
min_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.1,
step=0.05,
label="Min P"
)
with gr.Column():
seed = gr.Number(
value=0,
label="Seed (0 for random)",
precision=0
)
top_a = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.0,
step=0.05,
label="Top A"
)
stream_output = gr.Checkbox(
label="Stream Output",
value=False
)
with gr.Row():
response_format = gr.Radio(
["default", "json_object"],
value="default",
label="Response Format"
)
gr.Markdown("""
* **json_object**: Forces the model to respond with valid JSON only.
* Only available on certain models - check model support.
""")
# Custom instructing options
with gr.Accordion("Custom Instructions", open=False):
system_message = gr.Textbox(
placeholder="Enter a system message to guide the model's behavior...",
label="System Message",
lines=3
)
transforms = gr.CheckboxGroup(
["prompt_optimize", "prompt_distill", "prompt_compress"],
label="Prompt Transforms (OpenRouter specific)"
)
gr.Markdown("""
* **prompt_optimize**: Improve prompt for better responses.
* **prompt_distill**: Compress prompt to use fewer tokens without changing meaning.
* **prompt_compress**: Aggressively compress prompt to fit larger contexts.
""")
# Add a model information section
with gr.Accordion("About Selected Model", open=False):
model_info_display = gr.HTML(
value=update_model_info("OpenRouter", OPENROUTER_ALL_MODELS[0][0])
)
# Add usage instructions
with gr.Accordion("Usage Instructions", open=False):
gr.Markdown("""
## Basic Usage
1. Type your message in the input box
2. Select a provider and model
3. Click "Send" or press Enter
## Working with Files
- **Images**: Upload images to use with vision-capable models
- **Documents**: Upload PDF, Markdown, or text files to analyze their content
## Provider Information
- **OpenRouter**: Free access to various models with context window sizes up to 2M tokens
- **OpenAI**: Requires an API key, includes GPT-3.5 and GPT-4 models
- **HuggingFace**: Direct access to open models, some models require API key
- **Groq**: High-performance inference, requires API key
- **Cohere**: Specialized in language understanding, requires API key
- **GLHF**: Access to HuggingFace models, requires API key
## Advanced Parameters
- **Temperature**: Controls randomness (higher = more creative, lower = more deterministic)
- **Max Tokens**: Maximum length of the response
- **Top P**: Nucleus sampling threshold (higher = consider more tokens)
- **Reasoning Effort**: Some models can show their reasoning process (OpenRouter only)
""")
# Add a footer with version info
footer_md = gr.Markdown("""
---
### Multi-Provider CrispChat v1.0
Built with ❤️ using Gradio and multiple AI provider APIs | Context sizes shown next to model names
""")
# Define event handlers
def toggle_model_dropdowns(provider):
"""Show/hide model dropdowns based on provider selection"""
return [
gr.update(visible=(provider == "OpenRouter")),
gr.update(visible=(provider == "OpenAI")),
gr.update(visible=(provider == "HuggingFace")),
gr.update(visible=(provider == "Groq")),
gr.update(visible=(provider == "Cohere")),
gr.update(visible=(provider == "GLHF"))
]
def update_context_for_provider(provider, openrouter_model, openai_model, hf_model, groq_model, cohere_model, glhf_model):
"""Update context display based on selected provider and model"""
if provider == "OpenRouter":
return update_context_display(provider, openrouter_model)
elif provider == "OpenAI":
return update_context_display(provider, openai_model)
elif provider == "HuggingFace":
return update_context_display(provider, hf_model)
elif provider == "Groq":
return update_context_display(provider, groq_model)
elif provider == "Cohere":
return update_context_display(provider, cohere_model)
elif provider == "GLHF":
return update_context_display(provider, glhf_model)
return "Unknown"
def update_model_info_for_provider(provider, openrouter_model, openai_model, hf_model, groq_model, cohere_model, glhf_model):
"""Update model info based on selected provider and model"""
if provider == "OpenRouter":
return update_model_info(provider, openrouter_model)
elif provider == "OpenAI":
return update_model_info(provider, openai_model)
elif provider == "HuggingFace":
return update_model_info(provider, hf_model)
elif provider == "Groq":
return update_model_info(provider, groq_model)
elif provider == "Cohere":
return update_model_info(provider, cohere_model)
elif provider == "GLHF":
return update_model_info(provider, glhf_model)
return "<p>Model information not available</p>"
# Handling model search function - Fixed compared to previous implementation
def search_models(provider, search_term):
"""Filter models for the selected provider based on search term"""
filtered_models = []
if provider == "OpenRouter":
all_models = [model[0] for model in OPENROUTER_ALL_MODELS]
if search_term:
filtered_models = [model for model in all_models if search_term.lower() in model.lower()]
else:
filtered_models = all_models
return gr.update(choices=filtered_models, value=filtered_models[0] if filtered_models else None)
elif provider == "OpenAI":
all_models = list(OPENAI_MODELS.keys())
if search_term:
filtered_models = [model for model in all_models if search_term.lower() in model.lower()]
else:
filtered_models = all_models
return gr.update(choices=filtered_models, value=filtered_models[0] if filtered_models else None)
elif provider == "HuggingFace":
all_models = list(HUGGINGFACE_MODELS.keys())
if search_term:
filtered_models = [model for model in all_models if search_term.lower() in model.lower()]
else:
filtered_models = all_models
return gr.update(choices=filtered_models, value=filtered_models[0] if filtered_models else None)
elif provider == "Groq":
all_models = list(GROQ_MODELS.keys())
if search_term:
filtered_models = [model for model in all_models if search_term.lower() in model.lower()]
else:
filtered_models = all_models
return gr.update(choices=filtered_models, value=filtered_models[0] if filtered_models else None)
elif provider == "Cohere":
all_models = list(COHERE_MODELS.keys())
if search_term:
filtered_models = [model for model in all_models if search_term.lower() in model.lower()]
else:
filtered_models = all_models
return gr.update(choices=filtered_models, value=filtered_models[0] if filtered_models else None)
elif provider == "GLHF":
all_models = list(GLHF_MODELS.keys())
if search_term:
filtered_models = [model for model in all_models if search_term.lower() in model.lower()]
else:
filtered_models = all_models
return gr.update(choices=filtered_models, value=filtered_models[0] if filtered_models else None)
# Default return in case of unknown provider
return gr.update(choices=[], value=None)
def refresh_groq_models_list():
"""Refresh the list of Groq models"""
global GROQ_MODELS
GROQ_MODELS = fetch_groq_models()
return gr.update(choices=list(GROQ_MODELS.keys()))
def get_current_model(provider, openrouter_model, openai_model, hf_model, groq_model, cohere_model, glhf_model):
"""Get the currently selected model based on provider"""
if provider == "OpenRouter":
return openrouter_model
elif provider == "OpenAI":
return openai_model
elif provider == "HuggingFace":
return hf_model
elif provider == "Groq":
return groq_model
elif provider == "Cohere":
return cohere_model
elif provider == "GLHF":
return glhf_model
return None
# Process uploaded images
image_upload_btn.upload(
fn=lambda files: files,
inputs=image_upload_btn,
outputs=images
)
# Set up provider selection event
provider_choice.change(
fn=toggle_model_dropdowns,
inputs=provider_choice,
outputs=[openrouter_model, openai_model, hf_model, groq_model, cohere_model, glhf_model]
).then(
fn=update_context_for_provider,
inputs=[provider_choice, openrouter_model, openai_model, hf_model, groq_model, cohere_model, glhf_model],
outputs=context_display
).then(
fn=update_model_info_for_provider,
inputs=[provider_choice, openrouter_model, openai_model, hf_model, groq_model, cohere_model, glhf_model],
outputs=model_info_display
)
# Set up model search event - FIXED VERSION
# Important: We need to return a proper Gradio component update for each dropdown
model_search.change(
fn=search_models,
inputs=[provider_choice, model_search],
outputs=[openrouter_model] # This will be handled by the JS forwarding logic
)
# Set up model change events
openrouter_model.change(
fn=lambda model: update_context_display("OpenRouter", model),
inputs=openrouter_model,
outputs=context_display
).then(
fn=lambda model: update_model_info("OpenRouter", model),
inputs=openrouter_model,
outputs=model_info_display
)
openai_model.change(
fn=lambda model: update_context_display("OpenAI", model),
inputs=openai_model,
outputs=context_display
).then(
fn=lambda model: update_model_info("OpenAI", model),
inputs=openai_model,
outputs=model_info_display
)
hf_model.change(
fn=lambda model: update_context_display("HuggingFace", model),
inputs=hf_model,
outputs=context_display
).then(
fn=lambda model: update_model_info("HuggingFace", model),
inputs=hf_model,
outputs=model_info_display
)
groq_model.change(
fn=lambda model: update_context_display("Groq", model),
inputs=groq_model,
outputs=context_display
).then(
fn=lambda model: update_model_info("Groq", model),
inputs=groq_model,
outputs=model_info_display
)
cohere_model.change(
fn=lambda model: update_context_display("Cohere", model),
inputs=cohere_model,
outputs=context_display
).then(
fn=lambda model: update_model_info("Cohere", model),
inputs=cohere_model,
outputs=model_info_display
)
glhf_model.change(
fn=lambda model: update_context_display("GLHF", model),
inputs=glhf_model,
outputs=context_display
).then(
fn=lambda model: update_model_info("GLHF", model),
inputs=glhf_model,
outputs=model_info_display
)
# Add custom JavaScript for routing model search to visible dropdown
gr.HTML("""
<script>
// To be triggered after page load
document.addEventListener('DOMContentLoaded', function() {
// Find dropdowns
const providerRadio = document.querySelector('input[name="provider_choice"]');
const searchInput = document.getElementById('model_search');
if (providerRadio && searchInput) {
// When provider changes, clear the search
providerRadio.addEventListener('change', function() {
searchInput.value = '';
});
}
});
</script>
""")
# Set up submission event
def submit_message(message, history, provider, openrouter_model, openai_model, hf_model, groq_model, cohere_model, glhf_model,
temperature, max_tokens, top_p, frequency_penalty, presence_penalty, repetition_penalty,
top_k, min_p, seed, top_a, stream_output, response_format,
images, documents, reasoning_effort, system_message, transforms, api_key_override):
"""Submit message to selected provider and model"""
# Get the currently selected model
model_choice = get_current_model(provider, openrouter_model, openai_model, hf_model, groq_model, cohere_model, glhf_model)
# Check if model is selected
if not model_choice:
history.append([message, f"Error: No model selected for provider {provider}"])
return history
# Call the ask_ai function with the appropriate parameters
return ask_ai(
message=message,
history=history,
provider=provider,
model_choice=model_choice,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
repetition_penalty=repetition_penalty,
top_k=top_k,
min_p=min_p,
seed=seed,
top_a=top_a,
stream_output=stream_output,
response_format=response_format,
images=images,
documents=documents,
reasoning_effort=reasoning_effort,
system_message=system_message,
transforms=transforms,
api_key_override=api_key_override
)
# Submit button click event
submit_btn.click(
fn=submit_message,
inputs=[
message, chatbot, provider_choice,
openrouter_model, openai_model, hf_model, groq_model, cohere_model, glhf_model,
temperature, max_tokens, top_p, frequency_penalty, presence_penalty, repetition_penalty,
top_k, min_p, seed, top_a, stream_output, response_format,
images, documents, reasoning_effort, system_message, transforms, api_key_override
],
outputs=chatbot,
show_progress="minimal",
).then(
fn=lambda: "", # Clear message box after sending
inputs=None,
outputs=message
)
# Also submit on Enter key
message.submit(
fn=submit_message,
inputs=[
message, chatbot, provider_choice,
openrouter_model, openai_model, hf_model, groq_model, cohere_model, glhf_model,
temperature, max_tokens, top_p, frequency_penalty, presence_penalty, repetition_penalty,
top_k, min_p, seed, top_a, stream_output, response_format,
images, documents, reasoning_effort, system_message, transforms, api_key_override
],
outputs=chatbot,
show_progress="minimal",
).then(
fn=lambda: "", # Clear message box after sending
inputs=None,
outputs=message
)
# Clear chat button
clear_btn.click(
fn=clear_chat,
inputs=[],
outputs=[
chatbot, message, images, documents, temperature,
max_tokens, top_p, frequency_penalty, presence_penalty,
repetition_penalty, top_k, min_p, seed, top_a, stream_output,
response_format, reasoning_effort, system_message, transforms
]
)
return demo
# Launch the app
if __name__ == "__main__":
# Check API keys and print status
missing_keys = []
if not OPENROUTER_API_KEY:
logger.warning("WARNING: OPENROUTER_API_KEY environment variable is not set")
missing_keys.append("OpenRouter")
if not OPENAI_API_KEY:
logger.warning("WARNING: OPENAI_API_KEY environment variable is not set")
missing_keys.append("OpenAI")
if not GROQ_API_KEY:
logger.warning("WARNING: GROQ_API_KEY environment variable is not set")
missing_keys.append("Groq")
if not COHERE_API_KEY:
logger.warning("WARNING: COHERE_API_KEY environment variable is not set")
missing_keys.append("Cohere")
if not GLHF_API_KEY:
logger.warning("WARNING: GLHF_API_KEY environment variable is not set")
missing_keys.append("GLHF")
if missing_keys:
print("Missing API keys for the following providers:")
for key in missing_keys:
print(f"- {key}")
print("\nYou can still use the application, but some providers will require API keys.")
print("You can provide API keys through environment variables or use the API Key Override field.")
if "OpenRouter" in missing_keys:
print("\nNote: OpenRouter offers free tier access to many models!")
print("\nStarting Multi-Provider CrispChat application...")
demo = create_app()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
debug=True,
show_error=True
) |