Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import torchvision.transforms as transforms | |
from PIL import Image | |
import os | |
from pathlib import Path | |
class FoodImageClassifier: | |
def __init__(self, model_dir="traced_models/food_101_vit_small", | |
model_file_name="model.pt", | |
labels_path='food_101_classes.txt'): | |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
print(self.device) | |
# Load the traced model | |
model_full_path = Path(model_dir,model_file_name) | |
self.model = torch.jit.load(model_full_path) | |
self.model = self.model.to(self.device) | |
self.model.eval() | |
# Define the same transforms used during training/testing | |
self.transforms = transforms.Compose([ | |
transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
# Load labels from file | |
with open(labels_path, 'r') as f: | |
self.labels = [line.strip() for line in f.readlines()] | |
def predict(self, image): | |
if image is None: | |
return None | |
# Convert to PIL Image if needed | |
if not isinstance(image, Image.Image): | |
image = Image.fromarray(image).convert('RGB') | |
# Preprocess image | |
img_tensor = self.transforms(image).unsqueeze(0).to(self.device) | |
# Get prediction | |
output = self.model(img_tensor) | |
probabilities = torch.nn.functional.softmax(output[0], dim=0) | |
# Create prediction dictionary | |
return { | |
self.labels[idx]: float(prob) | |
for idx, prob in enumerate(probabilities) | |
} | |
# Create classifier instance | |
classifier = FoodImageClassifier() | |
# Format available classes into HTML table - 10 per row | |
formatted_classes = ['<tr>'] | |
for i, label in enumerate(classifier.labels): | |
if i > 0 and i % 10 == 0: | |
formatted_classes.append('</tr><tr>') | |
formatted_classes.append(f'<td>{label}</td>') | |
formatted_classes.append('</tr>') | |
# Create HTML table with styling | |
table_html = f""" | |
<style> | |
.food-classes-table {{ | |
width: 100%; | |
border-collapse: collapse; | |
margin: 10px 0; | |
}} | |
.food-classes-table td {{ | |
padding: 6px; | |
text-align: center; | |
border: 1px solid var(--border-color-primary); | |
font-size: 14px; | |
color: var(--body-text-color); | |
}} | |
.food-classes-table tr td {{ | |
background-color: var(--background-fill-primary); | |
}} | |
</style> | |
<table class="food-classes-table"> | |
{''.join(formatted_classes)} | |
</table> | |
""" | |
# Create Gradio interface | |
demo = gr.Interface( | |
fn=classifier.predict, | |
inputs=gr.Image(), | |
outputs=gr.Label(num_top_classes=5), | |
title="Food classifier", | |
description="Upload an image to classify Food Images", | |
examples=[ | |
["sample_data/apple_pie.jpg"], | |
["sample_data/pizza.jpg"] | |
], | |
article=f"Available food classes:\n{table_html}" | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) |