import gradio as gr import torch import torchvision.transforms as transforms from PIL import Image import os from pathlib import Path class FoodImageClassifier: def __init__(self, model_dir="traced_models/food_101_vit_small", model_file_name="model.pt", labels_path='food_101_classes.txt'): self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(self.device) # Load the traced model model_full_path = Path(model_dir,model_file_name) self.model = torch.jit.load(model_full_path) self.model = self.model.to(self.device) self.model.eval() # Define the same transforms used during training/testing self.transforms = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) # Load labels from file with open(labels_path, 'r') as f: self.labels = [line.strip() for line in f.readlines()] @torch.no_grad() def predict(self, image): if image is None: return None # Convert to PIL Image if needed if not isinstance(image, Image.Image): image = Image.fromarray(image).convert('RGB') # Preprocess image img_tensor = self.transforms(image).unsqueeze(0).to(self.device) # Get prediction output = self.model(img_tensor) probabilities = torch.nn.functional.softmax(output[0], dim=0) # Create prediction dictionary return { self.labels[idx]: float(prob) for idx, prob in enumerate(probabilities) } # Create classifier instance classifier = FoodImageClassifier() # Format available classes into HTML table - 10 per row formatted_classes = ['