deepseek-v3-text-generation / deepseek_v3.py
crpatel's picture
gradio app
ab3efd5
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import SiLU
import yaml
def _init_weights(module, std=0.041666666666666664):
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
class RotaryPositionalEmbedding(nn.Module):
"""
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py#L240
Rotary Positional Embedding (RoPE) for transformers Implemntation derived from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
"""
def __init__(self, dim: int, theta: float = 10000.0):
super().__init__()
self.dim = dim
self.theta = theta
def forward(self, x: torch.Tensor, seq_len: int) -> torch.Tensor:
"""
Apply rotary positional embedding to the input tensor.
Args:
x (torch.Tensor): Input tensor of shape [B, T, H, D] or [B, T, D]
seq_len (int): Sequence length.
Returns:
torch.Tensor: Output tensor with rotary positional embeddings applied.
"""
# Handle different input shapes
if len(x.shape) == 3:
B, T, D = x.shape
is_4d = False
else:
B, T, H, D = x.shape
is_4d = True
# For 3D tensors, we need to ensure D is even
if not is_4d and D % 2 != 0:
raise ValueError(f"Feature dimension {D} must be divisible by 2 for RoPE")
# Generate position indices
position = torch.arange(T, dtype=torch.float32, device=x.device).unsqueeze(-1)
# Generate frequencies
if is_4d:
# For 4D tensors, use the head dimension
freqs = torch.exp(
torch.arange(0, D, 2, dtype=torch.float32, device=x.device) *
-(torch.log(torch.tensor(self.theta)) / D)
)
else:
# For 3D tensors, use the full dimension
freqs = torch.exp(
torch.arange(0, D, 2, dtype=torch.float32, device=x.device) *
-(torch.log(torch.tensor(self.theta)) / D)
)
# Compute sinusoids
sinusoid = position * freqs
sin = torch.sin(sinusoid)
cos = torch.cos(sinusoid)
# Reshape sin and cos to match the input tensor's shape
if is_4d:
sin = sin.unsqueeze(0).unsqueeze(2) # Shape: (1, T, 1, D // 2)
cos = cos.unsqueeze(0).unsqueeze(2) # Shape: (1, T, 1, D // 2)
else:
sin = sin.unsqueeze(0) # Shape: (1, T, D // 2)
cos = cos.unsqueeze(0) # Shape: (1, T, D // 2)
# Apply rotary embeddings
x_rotated = x.clone()
if is_4d:
x_rotated[..., 0::2] = x[..., 0::2] * cos - x[..., 1::2] * sin
x_rotated[..., 1::2] = x[..., 1::2] * cos + x[..., 0::2] * sin
else:
x_rotated[..., 0::2] = x[..., 0::2] * cos - x[..., 1::2] * sin
x_rotated[..., 1::2] = x[..., 1::2] * cos + x[..., 0::2] * sin
return x_rotated
class MultiHeadLatentAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.num_attention_heads = self.config['num_attention_heads']
self.hidden_size = self.config['hidden_size']
# Ensure the hidden size is divisible by the number of attention heads
if self.hidden_size % self.num_attention_heads != 0:
raise ValueError(
f"hidden_size ({self.hidden_size}) must be divisible by num_attention_heads ({self.num_attention_heads})"
)
self.head_dim = self.hidden_size // self.num_attention_heads
self.latent_dim = self.hidden_size // self.config['compression_ratio']
# Matrix is decomposed into D and U matrix
# Compression KV Projection Matrix
self.kv_proj_D = nn.Linear(self.hidden_size, self.latent_dim, bias=False)
# Compression Q Projection Matrix
self.q_proj_D = nn.Linear(self.hidden_size, self.latent_dim, bias=False)
# UnCompression k projection matrix
self.k_proj_U = nn.Linear(self.latent_dim, self.hidden_size//2, bias=False)
# UnCompression v projection matrix
self.v_proj_U = nn.Linear(self.latent_dim, self.hidden_size, bias=False)
# UnCompression Q projection matrix
self.q_proj_U = nn.Linear(self.latent_dim, self.hidden_size//2, bias=False)
# Rope Key Components, K is built from X and Q is build from q_proj_D
self.rope_k = nn.Linear(self.hidden_size, self.hidden_size//2, bias=False)
self.rope_q = nn.Linear(self.latent_dim, self.hidden_size//2, bias=False)
# output projection matrix
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.rotary_emb = RotaryPositionalEmbedding(self.hidden_size//2, self.config['rope_theta'])
def forward(self, x, attn_mask=None):
B, T, C = x.size() # Batch Size, Sequence Length, Hidden Size
# Compression KV Projection Matrix
kv_d = self.kv_proj_D(x) # [B, T, Latent Dim]
# Compression Q Projection Matrix
q_d = self.q_proj_D(x) # [B, T, Latent Dim]
# Uncompress KV & Q Projection Matrix
k_proj_2 = self.k_proj_U(kv_d) # [B, T, Hidden Size//2]
q_proj_2 = self.q_proj_U(q_d) # [B, T, Hidden Size//2]
v = self.v_proj_U(kv_d) # [B, T, Hidden Size]
# Rope components
k_rope_2 = self.rope_k(x) # [B, T, Hidden Size//2]
q_rope_2 = self.rope_q(q_d) # [B, T, Hidden Size//2]
# Apply ROPE to the rope components
k_rope_2 = self.rotary_emb(k_rope_2, T) # [B, T, Hidden Size//2]
q_rope_2 = self.rotary_emb(q_rope_2, T) # [B, T, Hidden Size//2]
# Reshape Components for Multi-Head Attention
k_proj_2 = k_proj_2.view(B, T, self.num_attention_heads, self.head_dim//2)
k_rope_2 = k_rope_2.view(B, T, self.num_attention_heads, self.head_dim//2)
q_proj_2 = q_proj_2.view(B, T, self.num_attention_heads, self.head_dim//2)
q_rope_2 = q_rope_2.view(B, T, self.num_attention_heads, self.head_dim//2)
# Concatenate Components
k = torch.cat((k_proj_2, k_rope_2), dim=-1) # [B, T, H, D]
q = torch.cat((q_proj_2, q_rope_2), dim=-1) # [B, T, H, D]
v = v.view(B, T, self.num_attention_heads, self.head_dim)
# Reshape Components for Multi-Head Attention
k = k.transpose(1, 2) # [B, H, T, D]
q = q.transpose(1, 2) # [B, H, T, D]
v = v.transpose(1, 2) # [B, H, T, D]
# Apply Scaled Dot-Product Attention
attn_out = F.scaled_dot_product_attention(q, k, v,
dropout_p=0.0,
is_causal=True,
attn_mask=attn_mask)
attn_out = attn_out.transpose(1, 2).contiguous().view(B, T, C) # [B, T, C]
return self.o_proj(attn_out) # [B, T, C]
class DeepSeekExpertLayer(nn.Module):
def __init__(self, hidden_size, intermediate_size):
super().__init__()
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = SiLU()
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class DeepSeekMOE(nn.Module):
"""
A Mixture of Experts (MoE) layer that routes input through a set of expert layers.
This class implements a mixture of experts mechanism where a subset of experts is selected
for each input token based on learned routing logits. The output is a combination of the
shared experts and the routed experts, allowing for efficient computation and increased
model capacity.
Attributes:
hidden_size (int): The size of the hidden layer.
intermediate_size (int): The size of the intermediate layer.
num_experts (int): Total number of experts available.
num_shared_experts (int): Number of shared experts that are used for all inputs.
top_k (int): The number of top experts to route each input to.
shared_experts (nn.ModuleList): List of shared expert layers.
routed_experts (nn.ModuleList): List of routed expert layers.
routing_fn (nn.Linear): Linear layer for computing routing logits.
routing_bias (nn.Parameter): Bias for the routing logits.
Methods:
forward(x): Forward pass through the MoE layer, routing input through selected experts.
"""
def __init__(self, hidden_size, intermediate_size, num_experts, num_shared_experts, top_k):
super().__init__()
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_experts = num_experts
self.num_shared_experts = num_shared_experts
self.top_k = top_k
self.num_routed_experts = num_experts - num_shared_experts
self.shared_experts = nn.ModuleList(
[DeepSeekExpertLayer(self.hidden_size, self.intermediate_size) for _ in range(self.num_shared_experts)]
)
self.routed_experts = nn.ModuleList(
[DeepSeekExpertLayer(self.hidden_size, self.intermediate_size) for _ in range(self.num_routed_experts)]
)
# Routing Function
self.routing_fn = nn.Linear(self.hidden_size, self.num_routed_experts, bias=False)
self.routing_bias = nn.Parameter(torch.zeros(self.num_routed_experts))
def forward(self, x):
B, T, C = x.size()
shared_out = sum(expert(x) for expert in self.shared_experts)
if self.num_shared_experts>1:
shared_out = shared_out/self.num_shared_experts # normalize the shared experts
# calculate the routing function
routing_logits = self.routing_fn(x) + self.routing_bias # [B, T, num_routed_experts]
# GEt Topk Experts per token
routing_probs = torch.sigmoid(routing_logits) # [B, T, num_routed_experts]
scores, indices = torch.topk(routing_probs, self.top_k, dim=-1) # [B, T, top_k]
# normalize the top k scores
scores = scores/torch.sum(scores, dim=-1, keepdim=True)
# process the routed experts
#combined_output = torch.zeros(B, T, C, device=x.device)
combined_output = torch.zeros_like(x)
# Calculate expert load for all experts
expert_load = torch.zeros(self.num_routed_experts, device=x.device)
for i in range(self.top_k):
expert_idx = indices[:, :, i] # [B, T, top_k]
expert_scores = scores[...,i:i+1]
# process the routed experts
for j in range(self.num_routed_experts):
mask = (expert_idx == j) # [B, T, 1]
if mask.any():
# Track expert usage (load)
expert_load[j] += mask.sum().float() / (B * T * self.top_k)
# Process tokens through this expert
expert_input = x[mask] # [B, T, 1, C]
expert_output = self.routed_experts[j](expert_input)
combined_output[mask] += expert_scores[mask] * expert_output
final_output = shared_out + combined_output
router_z_loss = self.update_bias_terms(expert_load)
return final_output, router_z_loss
def update_bias_terms(self, expert_load, router_z_loss_coef=0.001):
# Balance expert routing by adjusting the bias terms
# Target load is uniform distribution across experts
target_load = 1.0 / self.num_routed_experts
# Calculate load imbalance for each expert
load_diff = expert_load - target_load
# Dynamic update rate based on the magnitude of imbalance
# Larger imbalances get larger corrections
update_rate = 0.1 * torch.abs(load_diff)
# Update the routing bias to counteract imbalance
# Decrease bias for overutilized experts, increase for underutilized
self.routing_bias.data -= update_rate * load_diff
# Calculate the router z-loss to discourage extreme routing probabilities
# This helps stabilize training without auxiliary losses
# Z-loss encourages routing probabilities to stay away from 0 and 1
router_z_loss = router_z_loss_coef * torch.mean(torch.log(torch.sum(
torch.exp(self.routing_fn.weight), dim=-1)))
return router_z_loss
def update_bias_terms_old(self, expert_load, ):
# adjust the bias terms based on the expert load
target_load = 1/self.num_experts
load_diff = expert_load - target_load
# dyanamic update the bias based on the load imbalance
update_rate = 0.1 * torch.abs(load_diff)
# dyanmic update the bias terms using update rate
self.routing_bias = self.routing_bias - update_rate * load_diff
# for i in range(self.num_routed_experts):
# if expert_load[i] < target_load:
# self.routing_bias[i] -= 1
# else:
# self.routing_bias[i] += 1
class LlamaMLP(nn.Module):
"""
(mlp): LlamaMLP(
(moe): DeepSeekMOE(
(shared_experts): ModuleList(
(0): DeepSeekExpertLayer(
(gate_proj): Linear(in_features=576, out_features=1536, bias=False)
(up_proj): Linear(in_features=576, out_features=1536, bias=False)
(down_proj): Linear(in_features=1536, out_features=576, bias=False)
(act_fn): SiLU()
)
)
(routed_experts): ModuleList(
(0-2): 3 x DeepSeekExpertLayer(
(gate_proj): Linear(in_features=576, out_features=1536, bias=False)
(up_proj): Linear(in_features=576, out_features=1536, bias=False)
(down_proj): Linear(in_features=1536, out_features=576, bias=False)
(act_fn): SiLU()
)
)
(routing_fn): Linear(in_features=576, out_features=3, bias=False)
)
)
"""
def __init__(self, config):
super().__init__()
self.config = config
self.moe = DeepSeekMOE(hidden_size=config['hidden_size'],
intermediate_size=config['intermediate_size'],
num_experts=config['num_experts'],
num_shared_experts= config['num_shared_experts'],
top_k=config['top_k'])
# self.gate_proj = nn.Linear(self.config['hidden_size'], self.config['intermediate_size'], bias=False)
# self.up_proj = nn.Linear(self.config['hidden_size'], self.config['intermediate_size'], bias=False)
# self.down_proj = nn.Linear(self.config['intermediate_size'], self.config['hidden_size'], bias=False)
# self.act_fn = SiLU()
def forward(self, x):
output, router_z_loss = self.moe(x)
return output, router_z_loss
# gate = self.gate_proj(x)
# up = self.up_proj(x)
# down = self.down_proj(self.act_fn(gate)*up)
# return down
class LlamaRMSNorm(nn.Module):
"""
(norm): LlamaRMSNorm((576,), eps=1e-05)
# RMSNorm Formula:
# RMS(x) = sqrt((1 / d) * sum(x_i^2 for i in range(d)))
# x_normalized = x / RMS(x)
# output = gamma * x_normalized
"""
def __init__(self, config):
super().__init__()
self.config = config
self.eps = self.config['rms_norm_eps']
self.weight = nn.Parameter(torch.ones(self.config['hidden_size']))
def forward(self, x):
rms = torch.rsqrt(torch.mean(x ** 2, dim=-1, keepdim=True) + self.eps)
return self.weight *rms * x
class LlamaDecoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.self_attn = MultiHeadLatentAttention(self.config)
self.input_layernorm = LlamaRMSNorm(self.config)
self.mlp = LlamaMLP(self.config)
self.post_attention_layernorm = LlamaRMSNorm(self.config)
def forward(self, x):
residual = x
x = self.input_layernorm(x)
x = self.self_attn(x)
x = x + residual
residual = x
x = self.post_attention_layernorm(x)
x, router_z_loss = self.mlp(x)
x = x + residual
return x, router_z_loss
class DeepSeekV3Model(nn.Module):
def __init__(self, config):
super().__init__()
self.init_method = config['init_method']
self.config = config['model_config']
self.embed_tokens = nn.Embedding(self.config['vocab_size'], self.config['hidden_size'])
self.rotary_emb = RotaryPositionalEmbedding(self.config['hidden_size'], self.config['rope_theta'])
self.layers = nn.ModuleList([LlamaDecoderLayer(self.config) for _ in range(self.config['num_hidden_layers'])])
self.norm = LlamaRMSNorm(self.config)
self.lm_head = nn.Linear(self.config['hidden_size'], self.config['vocab_size'], bias=False)
if self.config['tie_word_embeddings']:
self.lm_head.weight = self.embed_tokens.weight
self.apply(lambda m: _init_weights(m, self.init_method['std']))
def forward(self, x, y=None):
x = self.embed_tokens(x)
total_router_z_loss = 0.0
for layer in self.layers:
x, router_z_loss = layer(x)
total_router_z_loss += router_z_loss
x = self.norm(x)
logits = self.lm_head(x) # B,T,V
logits = logits.view(-1, logits.size(-1)) # Shape: [B*T, V] # 20, 49152
if y is not None:
y = y.view(-1) # Shape: [B*T] # 20
ce_loss = torch.nn.functional.cross_entropy(logits, y)
# Combine CE loss with router z-loss
loss = ce_loss + total_router_z_loss
return logits, loss
else:
return logits, None
def generate(self, idx, max_new_tokens, context_length, temperature=1.0, top_k=None, eos_token=None, device=None):
model = self.to(device)
idx = idx.to(device)
model.eval()
for _ in range(max_new_tokens):
idx_cond = idx[:, -context_length:]
with torch.no_grad():
logits, _ = model(idx_cond) # Unpack both logits and loss (ignore loss)
logits = logits.view(idx_cond.shape[0], -1, model.config['vocab_size']) # Reshape to [batch, seq, vocab]
# Get the logits for the last token only
logits = logits[:, -1, :] # Shape: [batch_size, vocab_size]
if top_k is not None:
# top k sampling
top_logits, top_pos = torch.topk(logits, top_k)
min_logit = top_logits[:, -1].unsqueeze(-1)
logits = torch.where(logits < min_logit,
torch.tensor(float('-inf')).to(logits.device),
logits)
# temperature scaling
if temperature > 0.0:
logits /= temperature
probs = torch.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
else:
idx_next = torch.argmax(logits, dim=-1, keepdim=True)
if idx_next.item() == eos_token:
break
idx = torch.cat((idx, idx_next), dim=1)
model.train()
return idx
# if __name__ == "__main__":
# torch.manual_seed(0)
# config = yaml.load(open("config_smollm2_135M.yaml", "r"), Loader=yaml.FullLoader)
# print(config.keys())
# model_config = config['model']['model_config']
# print(model_config)
# model = DeepSeekV3Model(config['model'])
# x_tokens = torch.randint(0, model_config['vocab_size'], (1, 10)) # Generate random token indices
# print(model(x_tokens).shape)
# total_params = sum(p.numel() for p in model.parameters())
# print(f"Total parameters: {total_params}") #134515008
# print(model)