File size: 20,644 Bytes
ab3efd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import SiLU
import yaml


def _init_weights(module, std=0.041666666666666664):
    if isinstance(module, nn.Linear):
        module.weight.data.normal_(mean=0.0, std=std)
    elif isinstance(module, nn.Embedding):
        module.weight.data.normal_(mean=0.0, std=std)

class RotaryPositionalEmbedding(nn.Module):
    """
    # https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py#L240
    Rotary Positional Embedding (RoPE) for transformers Implemntation derived from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
    """
    def __init__(self, dim: int, theta: float = 10000.0):
        super().__init__()
        self.dim = dim
        self.theta = theta

    def forward(self, x: torch.Tensor, seq_len: int) -> torch.Tensor:
        """
        Apply rotary positional embedding to the input tensor.

        Args:
            x (torch.Tensor): Input tensor of shape [B, T, H, D] or [B, T, D]
            seq_len (int): Sequence length.

        Returns:
            torch.Tensor: Output tensor with rotary positional embeddings applied.
        """
        # Handle different input shapes
        if len(x.shape) == 3:
            B, T, D = x.shape
            is_4d = False
        else:
            B, T, H, D = x.shape
            is_4d = True
            
        # For 3D tensors, we need to ensure D is even
        if not is_4d and D % 2 != 0:
            raise ValueError(f"Feature dimension {D} must be divisible by 2 for RoPE")

        # Generate position indices
        position = torch.arange(T, dtype=torch.float32, device=x.device).unsqueeze(-1)

        # Generate frequencies
        if is_4d:
            # For 4D tensors, use the head dimension
            freqs = torch.exp(
                torch.arange(0, D, 2, dtype=torch.float32, device=x.device) * 
                -(torch.log(torch.tensor(self.theta)) / D)
            )
        else:
            # For 3D tensors, use the full dimension
            freqs = torch.exp(
                torch.arange(0, D, 2, dtype=torch.float32, device=x.device) * 
                -(torch.log(torch.tensor(self.theta)) / D)
            )

        # Compute sinusoids
        sinusoid = position * freqs
        sin = torch.sin(sinusoid)
        cos = torch.cos(sinusoid)

        # Reshape sin and cos to match the input tensor's shape
        if is_4d:
            sin = sin.unsqueeze(0).unsqueeze(2)  # Shape: (1, T, 1, D // 2)
            cos = cos.unsqueeze(0).unsqueeze(2)  # Shape: (1, T, 1, D // 2)
        else:
            sin = sin.unsqueeze(0)  # Shape: (1, T, D // 2)
            cos = cos.unsqueeze(0)  # Shape: (1, T, D // 2)

        # Apply rotary embeddings
        x_rotated = x.clone()
        
        if is_4d:
            x_rotated[..., 0::2] = x[..., 0::2] * cos - x[..., 1::2] * sin
            x_rotated[..., 1::2] = x[..., 1::2] * cos + x[..., 0::2] * sin
        else:
            x_rotated[..., 0::2] = x[..., 0::2] * cos - x[..., 1::2] * sin
            x_rotated[..., 1::2] = x[..., 1::2] * cos + x[..., 0::2] * sin

        return x_rotated

class MultiHeadLatentAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.num_attention_heads = self.config['num_attention_heads']
        self.hidden_size = self.config['hidden_size']
        # Ensure the hidden size is divisible by the number of attention heads
        if self.hidden_size % self.num_attention_heads != 0:
            raise ValueError(
                f"hidden_size ({self.hidden_size}) must be divisible by num_attention_heads ({self.num_attention_heads})"
            )
        self.head_dim = self.hidden_size // self.num_attention_heads
        self.latent_dim = self.hidden_size // self.config['compression_ratio']

        # Matrix is decomposed into D and U matrix 
        # Compression KV Projection Matrix
        self.kv_proj_D = nn.Linear(self.hidden_size, self.latent_dim, bias=False)
        # Compression Q Projection Matrix
        self.q_proj_D = nn.Linear(self.hidden_size, self.latent_dim, bias=False)

        # UnCompression k projection matrix
        self.k_proj_U = nn.Linear(self.latent_dim, self.hidden_size//2, bias=False)
        # UnCompression v projection matrix
        self.v_proj_U = nn.Linear(self.latent_dim, self.hidden_size, bias=False)    
        # UnCompression Q projection matrix
        self.q_proj_U = nn.Linear(self.latent_dim, self.hidden_size//2, bias=False)

        # Rope Key Components, K is built from X and Q is build from q_proj_D
        self.rope_k = nn.Linear(self.hidden_size, self.hidden_size//2, bias=False)
        self.rope_q = nn.Linear(self.latent_dim, self.hidden_size//2, bias=False)
        # output projection matrix
        self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)

        self.rotary_emb = RotaryPositionalEmbedding(self.hidden_size//2, self.config['rope_theta'])

    def forward(self, x, attn_mask=None):
        B, T, C = x.size() # Batch Size, Sequence Length, Hidden Size
        # Compression KV Projection Matrix
        kv_d = self.kv_proj_D(x) # [B, T, Latent Dim]
        # Compression Q Projection Matrix
        q_d = self.q_proj_D(x) # [B, T, Latent Dim]
        # Uncompress KV & Q Projection Matrix
        k_proj_2 = self.k_proj_U(kv_d) # [B, T, Hidden Size//2]
        q_proj_2 = self.q_proj_U(q_d) # [B, T, Hidden Size//2]
        v = self.v_proj_U(kv_d) # [B, T, Hidden Size]
        
        # Rope components
        k_rope_2 = self.rope_k(x) # [B, T, Hidden Size//2]
        q_rope_2 = self.rope_q(q_d) # [B, T, Hidden Size//2]
        
        # Apply ROPE to the rope components
        k_rope_2 = self.rotary_emb(k_rope_2, T) # [B, T, Hidden Size//2]
        q_rope_2 = self.rotary_emb(q_rope_2, T) # [B, T, Hidden Size//2]
        
        # Reshape Components for Multi-Head Attention
        k_proj_2 = k_proj_2.view(B, T, self.num_attention_heads, self.head_dim//2)
        k_rope_2 = k_rope_2.view(B, T, self.num_attention_heads, self.head_dim//2)
        q_proj_2 = q_proj_2.view(B, T, self.num_attention_heads, self.head_dim//2)
        q_rope_2 = q_rope_2.view(B, T, self.num_attention_heads, self.head_dim//2)
        
        # Concatenate Components
        k = torch.cat((k_proj_2, k_rope_2), dim=-1) # [B, T, H, D]
        q = torch.cat((q_proj_2, q_rope_2), dim=-1) # [B, T, H, D]
        v = v.view(B, T, self.num_attention_heads, self.head_dim)
        
        # Reshape Components for Multi-Head Attention
        k = k.transpose(1, 2) # [B, H, T, D]
        q = q.transpose(1, 2) # [B, H, T, D]
        v = v.transpose(1, 2) # [B, H, T, D]
        
        # Apply Scaled Dot-Product Attention
        attn_out = F.scaled_dot_product_attention(q, k, v, 
                                                  dropout_p=0.0, 
                                                  is_causal=True,
                                                  attn_mask=attn_mask)
        attn_out = attn_out.transpose(1, 2).contiguous().view(B, T, C) # [B, T, C]
        return self.o_proj(attn_out) # [B, T, C]

class DeepSeekExpertLayer(nn.Module):
    def __init__(self, hidden_size, intermediate_size):
        super().__init__()
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = SiLU()
    
    def forward(self, x):
        return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))

class DeepSeekMOE(nn.Module):
    """
    A Mixture of Experts (MoE) layer that routes input through a set of expert layers.

    This class implements a mixture of experts mechanism where a subset of experts is selected 
    for each input token based on learned routing logits. The output is a combination of the 
    shared experts and the routed experts, allowing for efficient computation and increased 
    model capacity.

    Attributes:
        hidden_size (int): The size of the hidden layer.
        intermediate_size (int): The size of the intermediate layer.
        num_experts (int): Total number of experts available.
        num_shared_experts (int): Number of shared experts that are used for all inputs.
        top_k (int): The number of top experts to route each input to.
        shared_experts (nn.ModuleList): List of shared expert layers.
        routed_experts (nn.ModuleList): List of routed expert layers.
        routing_fn (nn.Linear): Linear layer for computing routing logits.
        routing_bias (nn.Parameter): Bias for the routing logits.

    Methods:
        forward(x): Forward pass through the MoE layer, routing input through selected experts.
    """
    def __init__(self, hidden_size, intermediate_size, num_experts, num_shared_experts, top_k):
        super().__init__()
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_experts = num_experts
        self.num_shared_experts = num_shared_experts
        self.top_k = top_k
        self.num_routed_experts = num_experts - num_shared_experts
        self.shared_experts = nn.ModuleList(
            [DeepSeekExpertLayer(self.hidden_size, self.intermediate_size) for _ in range(self.num_shared_experts)]
        )
        self.routed_experts = nn.ModuleList(
            [DeepSeekExpertLayer(self.hidden_size, self.intermediate_size) for _ in range(self.num_routed_experts)]
        )
        
        # Routing Function
        self.routing_fn = nn.Linear(self.hidden_size, self.num_routed_experts, bias=False)
        self.routing_bias = nn.Parameter(torch.zeros(self.num_routed_experts))
    def forward(self, x):
        B, T, C = x.size()
        shared_out = sum(expert(x) for expert in self.shared_experts)
        if self.num_shared_experts>1:
            shared_out = shared_out/self.num_shared_experts # normalize the shared experts
        # calculate the routing function
        routing_logits = self.routing_fn(x) + self.routing_bias # [B, T, num_routed_experts]
        # GEt Topk Experts per token
        routing_probs = torch.sigmoid(routing_logits) # [B, T, num_routed_experts]
        scores, indices = torch.topk(routing_probs, self.top_k, dim=-1) # [B, T, top_k]
        # normalize the top k scores
        scores  = scores/torch.sum(scores, dim=-1, keepdim=True)
        # process the routed experts
        #combined_output = torch.zeros(B, T, C, device=x.device)
        combined_output = torch.zeros_like(x)

        # Calculate expert load for all experts
        expert_load = torch.zeros(self.num_routed_experts, device=x.device)
        for i in range(self.top_k):
            expert_idx = indices[:, :, i] # [B, T, top_k]
        
            expert_scores = scores[...,i:i+1]
            # process the routed experts
            for j in range(self.num_routed_experts):
                mask = (expert_idx == j) # [B, T, 1]
                if mask.any():
                    # Track expert usage (load)
                    expert_load[j] += mask.sum().float() / (B * T * self.top_k)
                    # Process tokens through this expert
                    expert_input = x[mask] # [B, T, 1, C]
                    expert_output = self.routed_experts[j](expert_input)
                    combined_output[mask] += expert_scores[mask] * expert_output
        final_output = shared_out + combined_output
        router_z_loss = self.update_bias_terms(expert_load)
        return final_output, router_z_loss
    
    def update_bias_terms(self, expert_load, router_z_loss_coef=0.001):
        # Balance expert routing by adjusting the bias terms
        # Target load is uniform distribution across experts
        target_load = 1.0 / self.num_routed_experts
        
        # Calculate load imbalance for each expert
        load_diff = expert_load - target_load
        
        # Dynamic update rate based on the magnitude of imbalance
        # Larger imbalances get larger corrections
        update_rate = 0.1 * torch.abs(load_diff)
        
        # Update the routing bias to counteract imbalance
        # Decrease bias for overutilized experts, increase for underutilized
        self.routing_bias.data -= update_rate * load_diff
        
        # Calculate the router z-loss to discourage extreme routing probabilities
        # This helps stabilize training without auxiliary losses
        # Z-loss encourages routing probabilities to stay away from 0 and 1
        router_z_loss = router_z_loss_coef * torch.mean(torch.log(torch.sum(
            torch.exp(self.routing_fn.weight), dim=-1)))
        
        return router_z_loss

    def update_bias_terms_old(self, expert_load, ):
        # adjust the bias terms based on the expert load
        target_load = 1/self.num_experts
        load_diff = expert_load - target_load
        # dyanamic update the bias based on the load imbalance
        update_rate = 0.1 * torch.abs(load_diff)
        # dyanmic update the bias terms using update rate
        self.routing_bias = self.routing_bias - update_rate * load_diff

        # for i in range(self.num_routed_experts):
        #     if expert_load[i] < target_load:
        #         self.routing_bias[i] -= 1
        #     else:
        #         self.routing_bias[i] += 1
class LlamaMLP(nn.Module):
    """
    (mlp): LlamaMLP(
        (moe): DeepSeekMOE(
          (shared_experts): ModuleList(
            (0): DeepSeekExpertLayer(
              (gate_proj): Linear(in_features=576, out_features=1536, bias=False)
              (up_proj): Linear(in_features=576, out_features=1536, bias=False)
              (down_proj): Linear(in_features=1536, out_features=576, bias=False)
              (act_fn): SiLU()
            )
          )
          (routed_experts): ModuleList(
            (0-2): 3 x DeepSeekExpertLayer(
              (gate_proj): Linear(in_features=576, out_features=1536, bias=False)
              (up_proj): Linear(in_features=576, out_features=1536, bias=False)
              (down_proj): Linear(in_features=1536, out_features=576, bias=False)
              (act_fn): SiLU()
            )
          )
          (routing_fn): Linear(in_features=576, out_features=3, bias=False)
        )
      )
    """
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.moe = DeepSeekMOE(hidden_size=config['hidden_size'],
                                intermediate_size=config['intermediate_size'],
                                num_experts=config['num_experts'],
                                num_shared_experts= config['num_shared_experts'], 
                                top_k=config['top_k'])
        # self.gate_proj = nn.Linear(self.config['hidden_size'], self.config['intermediate_size'], bias=False)
        # self.up_proj = nn.Linear(self.config['hidden_size'], self.config['intermediate_size'], bias=False)
        # self.down_proj = nn.Linear(self.config['intermediate_size'], self.config['hidden_size'], bias=False)
        # self.act_fn = SiLU()
    def forward(self, x):
        output, router_z_loss = self.moe(x)
        return output, router_z_loss
        # gate = self.gate_proj(x)
        # up = self.up_proj(x)
        # down = self.down_proj(self.act_fn(gate)*up)
        # return down 
    
class LlamaRMSNorm(nn.Module):
    """
    (norm): LlamaRMSNorm((576,), eps=1e-05)
        # RMSNorm Formula:
        #    RMS(x) = sqrt((1 / d) * sum(x_i^2 for i in range(d)))
        #    x_normalized = x / RMS(x)
        #    output = gamma * x_normalized
    
    """
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.eps = self.config['rms_norm_eps']
        self.weight = nn.Parameter(torch.ones(self.config['hidden_size']))
    def forward(self, x):
        rms = torch.rsqrt(torch.mean(x ** 2, dim=-1, keepdim=True) + self.eps)
        return  self.weight *rms * x
    
class LlamaDecoderLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.self_attn = MultiHeadLatentAttention(self.config)
        self.input_layernorm = LlamaRMSNorm(self.config)
        self.mlp = LlamaMLP(self.config)
        self.post_attention_layernorm = LlamaRMSNorm(self.config)   
    
    def forward(self, x):
        residual = x
        x = self.input_layernorm(x)
        x = self.self_attn(x)
        x = x + residual
        residual = x
        x = self.post_attention_layernorm(x)
        x, router_z_loss = self.mlp(x)
        x = x + residual
        return x, router_z_loss
    
class DeepSeekV3Model(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.init_method = config['init_method']
        self.config = config['model_config']
        self.embed_tokens = nn.Embedding(self.config['vocab_size'], self.config['hidden_size'])
        self.rotary_emb = RotaryPositionalEmbedding(self.config['hidden_size'], self.config['rope_theta'])
        self.layers = nn.ModuleList([LlamaDecoderLayer(self.config) for _ in range(self.config['num_hidden_layers'])])
        self.norm = LlamaRMSNorm(self.config)
        self.lm_head = nn.Linear(self.config['hidden_size'], self.config['vocab_size'], bias=False)
        
        if self.config['tie_word_embeddings']:
            self.lm_head.weight = self.embed_tokens.weight
        
        self.apply(lambda m: _init_weights(m, self.init_method['std']))
    
    def forward(self, x, y=None):
        x = self.embed_tokens(x)
        total_router_z_loss = 0.0
        for layer in self.layers:
            x, router_z_loss = layer(x)
            total_router_z_loss += router_z_loss
        x = self.norm(x)
        logits = self.lm_head(x) # B,T,V
        logits = logits.view(-1, logits.size(-1))  # Shape: [B*T, V] # 20, 49152
        if y is not None:
            y = y.view(-1)  # Shape: [B*T] # 20
            ce_loss = torch.nn.functional.cross_entropy(logits, y)
            # Combine CE loss with router z-loss
            loss = ce_loss + total_router_z_loss
            return logits, loss
        else:
            return logits, None

    
    def generate(self, idx, max_new_tokens, context_length, temperature=1.0, top_k=None, eos_token=None, device=None):
        model = self.to(device)
        idx = idx.to(device)
        model.eval()
        for _ in range(max_new_tokens):
            idx_cond = idx[:, -context_length:]
            with torch.no_grad():
                logits, _ = model(idx_cond)  # Unpack both logits and loss (ignore loss)
                logits = logits.view(idx_cond.shape[0], -1, model.config['vocab_size'])  # Reshape to [batch, seq, vocab]
                
            # Get the logits for the last token only
            logits = logits[:, -1, :]  # Shape: [batch_size, vocab_size]
            
            if top_k is not None:
                # top k sampling
                top_logits, top_pos = torch.topk(logits, top_k)
                min_logit = top_logits[:, -1].unsqueeze(-1)
                logits = torch.where(logits < min_logit,
                                torch.tensor(float('-inf')).to(logits.device),
                                logits)
            
            # temperature scaling
            if temperature > 0.0:
                logits /= temperature
                probs = torch.softmax(logits, dim=-1)
                idx_next = torch.multinomial(probs, num_samples=1)
            else:
                idx_next = torch.argmax(logits, dim=-1, keepdim=True)
                
            if idx_next.item() == eos_token:
                break
                
            idx = torch.cat((idx, idx_next), dim=1)
        model.train()
        return idx

# if __name__ == "__main__":
#     torch.manual_seed(0)
#     config = yaml.load(open("config_smollm2_135M.yaml", "r"), Loader=yaml.FullLoader)
#     print(config.keys())
#     model_config = config['model']['model_config']
#     print(model_config)
#     model = DeepSeekV3Model(config['model'])
#     x_tokens = torch.randint(0, model_config['vocab_size'], (1, 10))  # Generate random token indices
#     print(model(x_tokens).shape)
#     total_params = sum(p.numel() for p in model.parameters())
#     print(f"Total parameters: {total_params}") #134515008
#     print(model)