File size: 13,466 Bytes
a23cb5a 10e9b7d a23cb5a 10e9b7d 3c4371f a23cb5a 10e9b7d d59f015 e80aab9 3db6293 e80aab9 31243f4 d59f015 a23cb5a 31243f4 a23cb5a 31243f4 a23cb5a 4021bf3 b90251f 31243f4 7d65c66 b177367 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 b177367 31243f4 a23cb5a 31243f4 3c4371f 31243f4 b177367 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3c4371f 31243f4 e80aab9 31243f4 3c4371f 7d65c66 3c4371f 7d65c66 31243f4 e80aab9 b177367 7d65c66 3c4371f 31243f4 a23cb5a 31243f4 a23cb5a 7d65c66 31243f4 a23cb5a 31243f4 3c4371f 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 a23cb5a e514fd7 a23cb5a e514fd7 e80aab9 7e4a06b e80aab9 a23cb5a 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import base64
import inspect
import mimetypes
import os
import tempfile
import gradio as gr
import pandas as pd
import requests
from langchain_community.document_loaders import UnstructuredExcelLoader
from agents import supervisor_agent
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
def fetch_file(task_id):
if not task_id:
return None
url = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}"
response = requests.get(url)
if response.status_code == 200:
return response.content # Return raw bytes
else:
print(f"Failed to fetch file for task_id {task_id}: {response.status_code}")
return None
def build_multimodal_message(question, file_bytes=None, file_name=None):
"""
Build a multimodal message with correct content blocks for text, image, audio, or file.
For .xlsx files, extract the text and append it to the question, since LLMs do not natively support .xlsx.
Follows: https://python.langchain.com/docs/how_to/multimodal_inputs/
"""
content = []
# Special handling for .xlsx files
if file_bytes and file_name and file_name.lower().endswith('.xlsx'):
with tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
tmp.write(file_bytes)
tmp_path = tmp.name
loader = UnstructuredExcelLoader(tmp_path, mode="elements")
docs = loader.load()
excel_text = "\n".join(doc.page_content for doc in docs)
question = f"{question}\n\n[Excel file content follows:]\n{excel_text}"
content.append({"type": "text", "text": question})
if file_bytes and file_name and not file_name.lower().endswith('.xlsx'):
ext = file_name.lower().split('.')[-1]
b64_data = base64.b64encode(file_bytes).decode("utf-8")
mime_type, _ = mimetypes.guess_type(file_name)
# Handle common audio/image types explicitly
if ext in ["png"]:
mime_type = "image/png"
block_type = "image"
elif ext in ["jpg", "jpeg"]:
mime_type = "image/jpeg"
block_type = "image"
elif ext == "mp3":
mime_type = "audio/mpeg"
block_type = "audio"
elif ext == "wav":
mime_type = "audio/wav"
block_type = "audio"
elif ext == "m4a":
mime_type = "audio/mp4"
block_type = "audio"
else:
block_type = "file"
if not mime_type:
mime_type = "application/octet-stream"
block = {
"type": block_type,
"source_type": "base64",
"data": b64_data,
"mime_type": mime_type,
"filename": file_name,
}
content.append(block)
return [{"role": "user", "content": content}]
def filter_supported_content_blocks(messages):
allowed_types = {"text", "image_url", "input_audio", "refusal", "audio", "file", "image"}
filtered = []
for msg in messages:
if "content" in msg and isinstance(msg["content"], list):
filtered_content = [block for block in msg["content"] if block.get("type") in allowed_types]
msg = dict(msg)
msg["content"] = filtered_content
filtered.append(msg)
return filtered
class Agent:
def __init__(self):
self.main_agent = supervisor_agent
print("Agent initialized.")
def __call__(self, question: str, file_name: str = "", task_id: str = "") -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
file_bytes = fetch_file(task_id) if file_name else None
message = build_multimodal_message(question, file_bytes, file_name)
# Filter out unsupported content block types
message = filter_supported_content_blocks(message)
result = self.main_agent.invoke({"messages": message})
answer = result["messages"][-1]
content = answer.content
if isinstance(content, list) and content and isinstance(content[0], dict) and "text" in content[0]:
return content[0]["text"]
elif isinstance(content, str):
return content
else:
return str(content)
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = Agent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
file_name = item.get("file_name", "")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text, file_name, task_id)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Enter your OpenAI and Google API keys below (these are required for the agent to work).
4. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit" button, it can take quite some time (this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a separate action or even to answer the questions in async.
"""
)
gr.LoginButton()
openai_key_box = gr.Textbox(label="OpenAI API Key", type="password", placeholder="sk-...", lines=1)
google_key_box = gr.Textbox(label="Google API Key", type="password", placeholder="AIza...", lines=1)
set_keys_btn = gr.Button("Set API Keys")
status_api_keys = gr.Textbox(label="API Key Status", lines=1, interactive=False)
def set_api_keys(openai_key, google_key):
if openai_key:
os.environ["OPENAI_API_KEY"] = openai_key
if google_key:
os.environ["GOOGLE_API_KEY"] = google_key
if openai_key or google_key:
return "API keys set for this session."
return "No API keys provided."
set_keys_btn.click(
fn=set_api_keys,
inputs=[openai_key_box, google_key_box],
outputs=status_api_keys
)
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |