Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,15 @@
|
|
|
|
|
|
|
|
1 |
import os
|
|
|
|
|
2 |
import gradio as gr
|
3 |
-
import requests
|
4 |
-
import inspect
|
5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
@@ -10,14 +17,98 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
10 |
|
11 |
# --- Basic Agent Definition ---
|
12 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def __init__(self):
|
15 |
-
|
16 |
-
|
|
|
17 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
23 |
"""
|
@@ -40,7 +131,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
40 |
|
41 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
42 |
try:
|
43 |
-
agent =
|
44 |
except Exception as e:
|
45 |
print(f"Error instantiating agent: {e}")
|
46 |
return f"Error initializing agent: {e}", None
|
@@ -76,16 +167,17 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
76 |
for item in questions_data:
|
77 |
task_id = item.get("task_id")
|
78 |
question_text = item.get("question")
|
|
|
79 |
if not task_id or question_text is None:
|
80 |
print(f"Skipping item with missing task_id or question: {item}")
|
81 |
continue
|
82 |
try:
|
83 |
-
submitted_answer = agent(question_text)
|
84 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
85 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
86 |
except Exception as e:
|
87 |
-
|
88 |
-
|
89 |
|
90 |
if not answers_payload:
|
91 |
print("Agent did not produce any answers to submit.")
|
@@ -149,17 +241,38 @@ with gr.Blocks() as demo:
|
|
149 |
|
150 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
151 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
152 |
-
3.
|
|
|
153 |
|
154 |
---
|
155 |
**Disclaimers:**
|
156 |
-
Once clicking on the "submit button, it can take quite some time (
|
157 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a
|
158 |
"""
|
159 |
)
|
160 |
|
161 |
gr.LoginButton()
|
162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
164 |
|
165 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
1 |
+
import base64
|
2 |
+
import inspect
|
3 |
+
import mimetypes
|
4 |
import os
|
5 |
+
import tempfile
|
6 |
+
|
7 |
import gradio as gr
|
|
|
|
|
8 |
import pandas as pd
|
9 |
+
import requests
|
10 |
+
from langchain_community.document_loaders import UnstructuredExcelLoader
|
11 |
+
|
12 |
+
from agents import supervisor_agent
|
13 |
|
14 |
# (Keep Constants as is)
|
15 |
# --- Constants ---
|
|
|
17 |
|
18 |
# --- Basic Agent Definition ---
|
19 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
20 |
+
def fetch_file(task_id):
|
21 |
+
if not task_id:
|
22 |
+
return None
|
23 |
+
url = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}"
|
24 |
+
response = requests.get(url)
|
25 |
+
if response.status_code == 200:
|
26 |
+
return response.content # Return raw bytes
|
27 |
+
else:
|
28 |
+
print(f"Failed to fetch file for task_id {task_id}: {response.status_code}")
|
29 |
+
return None
|
30 |
+
|
31 |
+
def build_multimodal_message(question, file_bytes=None, file_name=None):
|
32 |
+
"""
|
33 |
+
Build a multimodal message with correct content blocks for text, image, audio, or file.
|
34 |
+
For .xlsx files, extract the text and append it to the question, since LLMs do not natively support .xlsx.
|
35 |
+
Follows: https://python.langchain.com/docs/how_to/multimodal_inputs/
|
36 |
+
"""
|
37 |
+
content = []
|
38 |
+
# Special handling for .xlsx files
|
39 |
+
if file_bytes and file_name and file_name.lower().endswith('.xlsx'):
|
40 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
|
41 |
+
tmp.write(file_bytes)
|
42 |
+
tmp_path = tmp.name
|
43 |
+
loader = UnstructuredExcelLoader(tmp_path, mode="elements")
|
44 |
+
docs = loader.load()
|
45 |
+
excel_text = "\n".join(doc.page_content for doc in docs)
|
46 |
+
question = f"{question}\n\n[Excel file content follows:]\n{excel_text}"
|
47 |
+
content.append({"type": "text", "text": question})
|
48 |
+
if file_bytes and file_name and not file_name.lower().endswith('.xlsx'):
|
49 |
+
ext = file_name.lower().split('.')[-1]
|
50 |
+
b64_data = base64.b64encode(file_bytes).decode("utf-8")
|
51 |
+
mime_type, _ = mimetypes.guess_type(file_name)
|
52 |
+
# Handle common audio/image types explicitly
|
53 |
+
if ext in ["png"]:
|
54 |
+
mime_type = "image/png"
|
55 |
+
block_type = "image"
|
56 |
+
elif ext in ["jpg", "jpeg"]:
|
57 |
+
mime_type = "image/jpeg"
|
58 |
+
block_type = "image"
|
59 |
+
elif ext == "mp3":
|
60 |
+
mime_type = "audio/mpeg"
|
61 |
+
block_type = "audio"
|
62 |
+
elif ext == "wav":
|
63 |
+
mime_type = "audio/wav"
|
64 |
+
block_type = "audio"
|
65 |
+
elif ext == "m4a":
|
66 |
+
mime_type = "audio/mp4"
|
67 |
+
block_type = "audio"
|
68 |
+
else:
|
69 |
+
block_type = "file"
|
70 |
+
if not mime_type:
|
71 |
+
mime_type = "application/octet-stream"
|
72 |
+
block = {
|
73 |
+
"type": block_type,
|
74 |
+
"source_type": "base64",
|
75 |
+
"data": b64_data,
|
76 |
+
"mime_type": mime_type,
|
77 |
+
"filename": file_name,
|
78 |
+
}
|
79 |
+
content.append(block)
|
80 |
+
return [{"role": "user", "content": content}]
|
81 |
+
|
82 |
+
def filter_supported_content_blocks(messages):
|
83 |
+
allowed_types = {"text", "image_url", "input_audio", "refusal", "audio", "file", "image"}
|
84 |
+
filtered = []
|
85 |
+
for msg in messages:
|
86 |
+
if "content" in msg and isinstance(msg["content"], list):
|
87 |
+
filtered_content = [block for block in msg["content"] if block.get("type") in allowed_types]
|
88 |
+
msg = dict(msg)
|
89 |
+
msg["content"] = filtered_content
|
90 |
+
filtered.append(msg)
|
91 |
+
return filtered
|
92 |
+
|
93 |
+
class Agent:
|
94 |
def __init__(self):
|
95 |
+
self.main_agent = supervisor_agent
|
96 |
+
print("Agent initialized.")
|
97 |
+
def __call__(self, question: str, file_name: str = "", task_id: str = "") -> str:
|
98 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
99 |
+
file_bytes = fetch_file(task_id) if file_name else None
|
100 |
+
message = build_multimodal_message(question, file_bytes, file_name)
|
101 |
+
# Filter out unsupported content block types
|
102 |
+
message = filter_supported_content_blocks(message)
|
103 |
+
result = self.main_agent.invoke({"messages": message})
|
104 |
+
answer = result["messages"][-1]
|
105 |
+
content = answer.content
|
106 |
+
if isinstance(content, list) and content and isinstance(content[0], dict) and "text" in content[0]:
|
107 |
+
return content[0]["text"]
|
108 |
+
elif isinstance(content, str):
|
109 |
+
return content
|
110 |
+
else:
|
111 |
+
return str(content)
|
112 |
|
113 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
114 |
"""
|
|
|
131 |
|
132 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
133 |
try:
|
134 |
+
agent = Agent()
|
135 |
except Exception as e:
|
136 |
print(f"Error instantiating agent: {e}")
|
137 |
return f"Error initializing agent: {e}", None
|
|
|
167 |
for item in questions_data:
|
168 |
task_id = item.get("task_id")
|
169 |
question_text = item.get("question")
|
170 |
+
file_name = item.get("file_name", "")
|
171 |
if not task_id or question_text is None:
|
172 |
print(f"Skipping item with missing task_id or question: {item}")
|
173 |
continue
|
174 |
try:
|
175 |
+
submitted_answer = agent(question_text, file_name, task_id)
|
176 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
177 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
178 |
except Exception as e:
|
179 |
+
print(f"Error running agent on task {task_id}: {e}")
|
180 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
181 |
|
182 |
if not answers_payload:
|
183 |
print("Agent did not produce any answers to submit.")
|
|
|
241 |
|
242 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
243 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
244 |
+
3. Enter your OpenAI and Google API keys below (these are required for the agent to work).
|
245 |
+
4. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
246 |
|
247 |
---
|
248 |
**Disclaimers:**
|
249 |
+
Once clicking on the "submit" button, it can take quite some time (this is the time for the agent to go through all the questions).
|
250 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a separate action or even to answer the questions in async.
|
251 |
"""
|
252 |
)
|
253 |
|
254 |
gr.LoginButton()
|
255 |
|
256 |
+
openai_key_box = gr.Textbox(label="OpenAI API Key", type="password", placeholder="sk-...", lines=1)
|
257 |
+
google_key_box = gr.Textbox(label="Google API Key", type="password", placeholder="AIza...", lines=1)
|
258 |
+
set_keys_btn = gr.Button("Set API Keys")
|
259 |
+
status_api_keys = gr.Textbox(label="API Key Status", lines=1, interactive=False)
|
260 |
+
|
261 |
+
def set_api_keys(openai_key, google_key):
|
262 |
+
if openai_key:
|
263 |
+
os.environ["OPENAI_API_KEY"] = openai_key
|
264 |
+
if google_key:
|
265 |
+
os.environ["GOOGLE_API_KEY"] = google_key
|
266 |
+
if openai_key or google_key:
|
267 |
+
return "API keys set for this session."
|
268 |
+
return "No API keys provided."
|
269 |
+
|
270 |
+
set_keys_btn.click(
|
271 |
+
fn=set_api_keys,
|
272 |
+
inputs=[openai_key_box, google_key_box],
|
273 |
+
outputs=status_api_keys
|
274 |
+
)
|
275 |
+
|
276 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
277 |
|
278 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|