drhead
Add attention visualization + other updates
37183bc
raw
history blame
17 kB
import msgspec
import os
import zipfile
from io import BytesIO
from tempfile import NamedTemporaryFile
import tempfile
import numpy as np
import matplotlib.cm as cm
import gradio as gr
import pandas as pd
from PIL import Image
import safetensors.torch
import spaces
import timm
from timm.models import VisionTransformer
import torch
from torchvision.transforms import transforms
from torchvision.transforms import InterpolationMode
import torchvision.transforms.functional as TF
from torch.utils.data import Dataset, DataLoader
from math import ceil
from typing import Callable
from functools import partial
import spaces.config
from spaces.zero.decorator import P, R
from huggingface_hub import hf_hub_download
def _dynGPU(
fn: Callable[P, R] | None, duration: Callable[P, int], min=10, max=300, step=5
) -> Callable[P, R]:
if not spaces.config.Config.zero_gpu:
return fn
funcs = [
(t, spaces.GPU(duration=t)(lambda *args, **kwargs: fn(*args, **kwargs)))
for t in range(min, max + 1, step)
]
def wrapper(*args, **kwargs):
requirement = duration(*args, **kwargs)
# find the function that satisfies the duration requirement
for t, func in funcs:
if t >= requirement:
gr.Info(f"Acquiring ZeroGPU for {t} seconds")
return func(*args, **kwargs)
# if no function is found, return the last one
gr.Info(f"Acquiring ZeroGPU for {funcs[-1][0]} seconds")
return funcs[-1][1](*args, **kwargs)
return wrapper
def dynGPU(
fn: Callable[P, R] | None = None,
duration: Callable[P, int] = lambda: 60,
min=10,
max=300,
step=5,
) -> Callable[P, R]:
if fn is None:
return partial(_dynGPU, duration=duration, min=min, max=max, step=step)
return _dynGPU(fn, duration, min, max, step)
class Fit(torch.nn.Module):
def __init__(
self,
bounds: tuple[int, int] | int,
interpolation = InterpolationMode.LANCZOS,
grow: bool = True,
pad: float | None = None
):
super().__init__()
self.bounds = (bounds, bounds) if isinstance(bounds, int) else bounds
self.interpolation = interpolation
self.grow = grow
self.pad = pad
def forward(self, img: Image) -> Image:
wimg, himg = img.size
hbound, wbound = self.bounds
hscale = hbound / himg
wscale = wbound / wimg
if not self.grow:
hscale = min(hscale, 1.0)
wscale = min(wscale, 1.0)
scale = min(hscale, wscale)
if scale == 1.0:
return img
hnew = min(round(himg * scale), hbound)
wnew = min(round(wimg * scale), wbound)
img = TF.resize(img, (hnew, wnew), self.interpolation)
if self.pad is None:
return img
hpad = hbound - hnew
wpad = wbound - wnew
tpad = hpad // 2
bpad = hpad - tpad
lpad = wpad // 2
rpad = wpad - lpad
return TF.pad(img, (lpad, tpad, rpad, bpad), self.pad)
def __repr__(self) -> str:
return (
f"{self.__class__.__name__}(" +
f"bounds={self.bounds}, " +
f"interpolation={self.interpolation.value}, " +
f"grow={self.grow}, " +
f"pad={self.pad})"
)
class CompositeAlpha(torch.nn.Module):
def __init__(
self,
background: tuple[float, float, float] | float,
):
super().__init__()
self.background = (background, background, background) if isinstance(background, float) else background
self.background = torch.tensor(self.background).unsqueeze(1).unsqueeze(2)
def forward(self, img: torch.Tensor) -> torch.Tensor:
if img.shape[-3] == 3:
return img
alpha = img[..., 3, None, :, :]
img[..., :3, :, :] *= alpha
background = self.background.expand(-1, img.shape[-2], img.shape[-1])
if background.ndim == 1:
background = background[:, None, None]
elif background.ndim == 2:
background = background[None, :, :]
img[..., :3, :, :] += (1.0 - alpha) * background
return img[..., :3, :, :]
def __repr__(self) -> str:
return (
f"{self.__class__.__name__}(" +
f"background={self.background})"
)
transform = transforms.Compose([
Fit((384, 384)),
transforms.ToTensor(),
CompositeAlpha(0.5),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
transforms.CenterCrop((384, 384)),
])
model = timm.create_model(
"vit_so400m_patch14_siglip_384.webli",
pretrained=False,
num_classes=9083,
) # type: VisionTransformer
class GatedHead(torch.nn.Module):
def __init__(self,
num_features: int,
num_classes: int
):
super().__init__()
self.num_classes = num_classes
self.linear = torch.nn.Linear(num_features, num_classes * 2)
self.act = torch.nn.Sigmoid()
self.gate = torch.nn.Sigmoid()
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.linear(x)
x = self.act(x[:, :self.num_classes]) * self.gate(x[:, self.num_classes:])
return x
model.head = GatedHead(min(model.head.weight.shape), 9083)
cached_model = hf_hub_download(
repo_id="RedRocket/JointTaggerProject",
subfolder="JTP_PILOT2",
filename="JTP_PILOT2-e3-vit_so400m_patch14_siglip_384.safetensors"
)
safetensors.torch.load_model(model, cached_model)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
model.to(device='cuda', dtype=torch.float16, memory_format=torch.channels_last)
model.eval()
with open("tagger_tags.json", "rb") as file:
tags = msgspec.json.decode(file.read(), type=dict[str, int])
for tag in tags.keys():
tags[tag.replace("_", " ")] = tags.pop(tag)
allowed_tags = list(tags.keys())
@spaces.GPU(duration=6)
def run_classifier(image: Image.Image, threshold):
img = image.convert('RGBA')
tensor = transform(img).unsqueeze(0)
with torch.no_grad():
probits = model(tensor)[0] # type: torch.Tensor
values, indices = probits.cpu().topk(250)
tag_score = {allowed_tags[idx.item()]: val.item() for idx, val in zip(indices, values)}
sorted_tag_score = dict(sorted(tag_score.items(), key=lambda item: item[1], reverse=True))
return *create_tags(threshold, sorted_tag_score), img, sorted_tag_score
def create_tags(threshold, sorted_tag_score: dict):
filtered_tag_score = {key: value for key, value in sorted_tag_score.items() if value > threshold}
text_no_impl = ", ".join(filtered_tag_score.keys())
return text_no_impl, filtered_tag_score
def clear_image():
return "", {}, None, {}, None
@spaces.GPU(duration=5)
def cam_inference(img, threshold, alpha, evt: gr.SelectData):
target_tag_index = tags[evt.value]
tensor = transform(img).unsqueeze(0)
gradients = {}
activations = {}
def hook_forward(module, input, output):
activations['value'] = output
def hook_backward(module, grad_in, grad_out):
gradients['value'] = grad_out[0]
handle_forward = model.norm.register_forward_hook(hook_forward)
handle_backward = model.norm.register_full_backward_hook(hook_backward)
probits = model(tensor)[0]
model.zero_grad()
probits[target_tag_index].backward(retain_graph=True)
with torch.no_grad():
patch_grads = gradients.get('value')
patch_acts = activations.get('value')
weights = torch.mean(patch_grads, dim=1).squeeze(0)
cam_1d = torch.einsum('pe,e->p', patch_acts.squeeze(0), weights)
cam_1d = torch.relu(cam_1d)
cam = cam_1d.reshape(27, 27).detach().cpu().numpy()
handle_forward.remove()
handle_backward.remove()
return create_cam_visualization_pil(img, cam, alpha=alpha, vis_threshold=threshold), cam
def create_cam_visualization_pil(image_pil, cam, alpha=0.6, vis_threshold=0.2):
"""
Overlays CAM on image and returns a PIL image.
Args:
image_pil: PIL Image (RGB)
cam: 2D numpy array (activation map)
alpha: float, blending factor
vis_threshold: float, minimum normalized CAM value to show color
Returns:
PIL.Image.Image with overlay
"""
if cam is None:
return image_pil
w, h = image_pil.size
size = max(w, h)
# Normalize CAM to [0, 1]
cam -= cam.min()
cam /= cam.max()
# Create heatmap using matplotlib colormap
colormap = cm.get_cmap('inferno')
cam_rgb = colormap(cam)[:, :, :3] # RGB
# Create alpha channel
cam_alpha = (cam >= vis_threshold).astype(np.float32) * alpha # Alpha mask
cam_rgba = np.dstack((cam_rgb, cam_alpha)) # Shape: (H, W, 4)
# Coarse upscale for CAM output -- keeps "blocky" effect that is truer to what is measured
cam_pil = Image.fromarray((cam_rgba * 255).astype(np.uint8), mode="RGBA")
cam_pil = cam_pil.resize((216,216), resample=Image.Resampling.NEAREST)
# Model uses padded image as input, this matches attention map to input image aspect ratio
cam_pil = cam_pil.resize((size, size), resample=Image.Resampling.BICUBIC)
cam_pil = transforms.CenterCrop((h, w))(cam_pil)
# Composite over original
composite = Image.alpha_composite(image_pil, cam_pil)
return composite
class ImageDataset(Dataset):
def __init__(self, image_files, transform):
self.image_files = image_files
self.transform = transform
def __len__(self):
return len(self.image_files)
def __getitem__(self, idx):
img_path = self.image_files[idx]
img = Image.open(img_path).convert('RGB')
return self.transform(img), os.path.basename(img_path)
def measure_duration(images, threshold) -> int:
return ceil(len(images) / 64) * 5 + 3
@dynGPU(duration=measure_duration)
def process_images(images, threshold):
dataset = ImageDataset(images, transform)
dataloader = DataLoader(dataset, batch_size=64, num_workers=0, pin_memory=True, drop_last=False)
all_results = []
with torch.no_grad():
for batch, filenames in dataloader:
batch = batch.to(device)
probabilities = model(batch)
for i, prob in enumerate(probabilities):
indices = torch.where(prob > threshold)[0]
values = prob[indices]
temp = []
tag_score = dict()
for j in range(indices.size(0)):
tag = allowed_tags[indices[j]]
score = values[j].item()
temp.append([tag, score])
tag_score[tag] = score
tags = ", ".join([t[0] for t in temp])
all_results.append((filenames[i], tags, tag_score))
print(all_results)
return all_results
def is_valid_image(file_path):
try:
with Image.open(file_path) as img:
img.verify()
return True
except:
return False
def process_zip(zip_file, threshold):
if zip_file is None:
return None, None
with tempfile.TemporaryDirectory() as temp_dir:
with zipfile.ZipFile(zip_file.name, 'r') as zip_ref:
zip_ref.extractall(temp_dir)
all_files = []
for root, _, files in os.walk(temp_dir):
for file in files:
all_files.append(os.path.join(root, file))
image_files = [f for f in all_files if is_valid_image(f)]
results = process_images(image_files, threshold)
temp_file = NamedTemporaryFile(delete=False, suffix=".zip")
with zipfile.ZipFile(temp_file, "w") as zip_ref:
for image_name, text_no_impl, _ in results:
txt_filename = ''.join(image_name.split('.')[:-1]) + ".txt"
with zip_ref.open(txt_filename, 'w') as file:
file.write(text_no_impl.encode())
temp_file.seek(0)
df = pd.DataFrame([(os.path.basename(f), t) for f, t, _ in results], columns=['Image', 'Tags'])
return temp_file.name, df
custom_css = """
.output-class { display: none; }
.inferno-slider input[type=range] {
background: linear-gradient(to right,
#000004, #1b0c41, #4a0c6b, #781c6d,
#a52c60, #cf4446, #ed6925, #fb9b06,
#f7d13d, #fcffa4
) !important;
background-size: 100% 100% !important;
}
#image_container-image {
width: 100%;
aspect-ratio: 1 / 1;
max-height: 100%;
}
#image_container img {
object-fit: contain !important;
}
"""
with gr.Blocks(css=custom_css) as demo:
gr.Markdown("""
## Joint Tagger Project: JTP-PILOT² Demo **BETA**
""")
with gr.Tabs():
with gr.TabItem("Single Image"):
original_image_state = gr.State() # stash a copy of the input image
sorted_tag_score_state = gr.State(value={}) # stash a copy of the input image
cam_state = gr.State()
with gr.Row():
with gr.Column():
image = gr.Image(label="Source", sources=['upload', 'clipboard'], type='pil', show_label=False, elem_id="image_container")
cam_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.40, label="CAM Threshold", elem_classes="inferno-slider")
alpha_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.60, label="CAM Alpha")
with gr.Column():
tag_string = gr.Textbox(label="Tag String")
threshold_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Tag Threshold")
label_box = gr.Label(label="Tag Predictions", num_top_classes=250, show_label=False)
image.upload(
fn=run_classifier,
inputs=[image, threshold_slider],
outputs=[tag_string, label_box, original_image_state, sorted_tag_score_state],
show_progress='minimal'
)
image.clear(
fn=clear_image,
inputs=[],
outputs=[tag_string, label_box, original_image_state, sorted_tag_score_state, cam_state]
)
threshold_slider.input(
fn=create_tags,
inputs=[threshold_slider, sorted_tag_score_state],
outputs=[tag_string, label_box],
show_progress='hidden'
)
label_box.select(
fn=cam_inference,
inputs=[original_image_state, cam_slider, alpha_slider],
outputs=[image, cam_state],
show_progress='minimal'
)
cam_slider.input(
fn=create_cam_visualization_pil,
inputs=[original_image_state, cam_state, alpha_slider, cam_slider],
outputs=[image],
show_progress='hidden'
)
alpha_slider.input(
fn=create_cam_visualization_pil,
inputs=[original_image_state, cam_state, alpha_slider, cam_slider],
outputs=[image],
show_progress='hidden'
)
with gr.TabItem("Multiple Images"):
with gr.Row():
with gr.Column():
zip_input = gr.File(label="Upload ZIP file", file_types=['.zip'])
multi_threshold_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Threshold")
process_button = gr.Button("Process Images")
with gr.Column():
zip_output = gr.File(label="Download Tagged Text Files (ZIP)")
dataframe_output = gr.Dataframe(label="Image Tags Summary")
process_button.click(
fn=process_zip,
inputs=[zip_input, multi_threshold_slider],
outputs=[zip_output, dataframe_output]
)
gr.Markdown("""
This tagger is designed for use on furry images (though may very well work on out-of-distribution images, potentially with funny results). A threshold of 0.2 is recommended. Lower thresholds often turn up more valid tags, but can also result in some amount of hallucinated tags.
This tagger is the result of joint efforts between members of the RedRocket team, with distinctions given to Thessalo for creating the foundation for this project with his efforts, RedHotTensors for redesigning the process into a second-order method that models information expectation, and drhead for dataset prep, creation of training code and supervision of training runs.
Special thanks to Minotoro at frosting.ai for providing the compute power for this project.
""")
if __name__ == "__main__":
demo.launch()