import msgspec import os import zipfile from io import BytesIO from tempfile import NamedTemporaryFile import tempfile import numpy as np import matplotlib.cm as cm import gradio as gr import pandas as pd from PIL import Image import safetensors.torch import spaces import timm from timm.models import VisionTransformer import torch from torchvision.transforms import transforms from torchvision.transforms import InterpolationMode import torchvision.transforms.functional as TF from torch.utils.data import Dataset, DataLoader from math import ceil from typing import Callable from functools import partial import spaces.config from spaces.zero.decorator import P, R from huggingface_hub import hf_hub_download def _dynGPU( fn: Callable[P, R] | None, duration: Callable[P, int], min=10, max=300, step=5 ) -> Callable[P, R]: if not spaces.config.Config.zero_gpu: return fn funcs = [ (t, spaces.GPU(duration=t)(lambda *args, **kwargs: fn(*args, **kwargs))) for t in range(min, max + 1, step) ] def wrapper(*args, **kwargs): requirement = duration(*args, **kwargs) # find the function that satisfies the duration requirement for t, func in funcs: if t >= requirement: gr.Info(f"Acquiring ZeroGPU for {t} seconds") return func(*args, **kwargs) # if no function is found, return the last one gr.Info(f"Acquiring ZeroGPU for {funcs[-1][0]} seconds") return funcs[-1][1](*args, **kwargs) return wrapper def dynGPU( fn: Callable[P, R] | None = None, duration: Callable[P, int] = lambda: 60, min=10, max=300, step=5, ) -> Callable[P, R]: if fn is None: return partial(_dynGPU, duration=duration, min=min, max=max, step=step) return _dynGPU(fn, duration, min, max, step) class Fit(torch.nn.Module): def __init__( self, bounds: tuple[int, int] | int, interpolation = InterpolationMode.LANCZOS, grow: bool = True, pad: float | None = None ): super().__init__() self.bounds = (bounds, bounds) if isinstance(bounds, int) else bounds self.interpolation = interpolation self.grow = grow self.pad = pad def forward(self, img: Image) -> Image: wimg, himg = img.size hbound, wbound = self.bounds hscale = hbound / himg wscale = wbound / wimg if not self.grow: hscale = min(hscale, 1.0) wscale = min(wscale, 1.0) scale = min(hscale, wscale) if scale == 1.0: return img hnew = min(round(himg * scale), hbound) wnew = min(round(wimg * scale), wbound) img = TF.resize(img, (hnew, wnew), self.interpolation) if self.pad is None: return img hpad = hbound - hnew wpad = wbound - wnew tpad = hpad // 2 bpad = hpad - tpad lpad = wpad // 2 rpad = wpad - lpad return TF.pad(img, (lpad, tpad, rpad, bpad), self.pad) def __repr__(self) -> str: return ( f"{self.__class__.__name__}(" + f"bounds={self.bounds}, " + f"interpolation={self.interpolation.value}, " + f"grow={self.grow}, " + f"pad={self.pad})" ) class CompositeAlpha(torch.nn.Module): def __init__( self, background: tuple[float, float, float] | float, ): super().__init__() self.background = (background, background, background) if isinstance(background, float) else background self.background = torch.tensor(self.background).unsqueeze(1).unsqueeze(2) def forward(self, img: torch.Tensor) -> torch.Tensor: if img.shape[-3] == 3: return img alpha = img[..., 3, None, :, :] img[..., :3, :, :] *= alpha background = self.background.expand(-1, img.shape[-2], img.shape[-1]) if background.ndim == 1: background = background[:, None, None] elif background.ndim == 2: background = background[None, :, :] img[..., :3, :, :] += (1.0 - alpha) * background return img[..., :3, :, :] def __repr__(self) -> str: return ( f"{self.__class__.__name__}(" + f"background={self.background})" ) transform = transforms.Compose([ Fit((384, 384)), transforms.ToTensor(), CompositeAlpha(0.5), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), transforms.CenterCrop((384, 384)), ]) model = timm.create_model( "vit_so400m_patch14_siglip_384.webli", pretrained=False, num_classes=9083, ) # type: VisionTransformer class GatedHead(torch.nn.Module): def __init__(self, num_features: int, num_classes: int ): super().__init__() self.num_classes = num_classes self.linear = torch.nn.Linear(num_features, num_classes * 2) self.act = torch.nn.Sigmoid() self.gate = torch.nn.Sigmoid() def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.linear(x) x = self.act(x[:, :self.num_classes]) * self.gate(x[:, self.num_classes:]) return x model.head = GatedHead(min(model.head.weight.shape), 9083) cached_model = hf_hub_download( repo_id="RedRocket/JointTaggerProject", subfolder="JTP_PILOT2", filename="JTP_PILOT2-e3-vit_so400m_patch14_siglip_384.safetensors" ) safetensors.torch.load_model(model, cached_model) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if torch.cuda.is_available(): model.to(device='cuda', dtype=torch.float16, memory_format=torch.channels_last) model.eval() with open("tagger_tags.json", "rb") as file: tags = msgspec.json.decode(file.read(), type=dict[str, int]) for tag in tags.keys(): tags[tag.replace("_", " ")] = tags.pop(tag) allowed_tags = list(tags.keys()) @spaces.GPU(duration=6) def run_classifier(image: Image.Image, threshold): img = image.convert('RGBA') tensor = transform(img).unsqueeze(0) with torch.no_grad(): probits = model(tensor)[0] # type: torch.Tensor values, indices = probits.cpu().topk(250) tag_score = {allowed_tags[idx.item()]: val.item() for idx, val in zip(indices, values)} sorted_tag_score = dict(sorted(tag_score.items(), key=lambda item: item[1], reverse=True)) return *create_tags(threshold, sorted_tag_score), img, sorted_tag_score def create_tags(threshold, sorted_tag_score: dict): filtered_tag_score = {key: value for key, value in sorted_tag_score.items() if value > threshold} text_no_impl = ", ".join(filtered_tag_score.keys()) return text_no_impl, filtered_tag_score def clear_image(): return "", {}, None, {}, None @spaces.GPU(duration=5) def cam_inference(img, threshold, alpha, evt: gr.SelectData): target_tag_index = tags[evt.value] tensor = transform(img).unsqueeze(0) gradients = {} activations = {} def hook_forward(module, input, output): activations['value'] = output def hook_backward(module, grad_in, grad_out): gradients['value'] = grad_out[0] handle_forward = model.norm.register_forward_hook(hook_forward) handle_backward = model.norm.register_full_backward_hook(hook_backward) probits = model(tensor)[0] model.zero_grad() probits[target_tag_index].backward(retain_graph=True) with torch.no_grad(): patch_grads = gradients.get('value') patch_acts = activations.get('value') weights = torch.mean(patch_grads, dim=1).squeeze(0) cam_1d = torch.einsum('pe,e->p', patch_acts.squeeze(0), weights) cam_1d = torch.relu(cam_1d) cam = cam_1d.reshape(27, 27).detach().cpu().numpy() handle_forward.remove() handle_backward.remove() return create_cam_visualization_pil(img, cam, alpha=alpha, vis_threshold=threshold), cam def create_cam_visualization_pil(image_pil, cam, alpha=0.6, vis_threshold=0.2): """ Overlays CAM on image and returns a PIL image. Args: image_pil: PIL Image (RGB) cam: 2D numpy array (activation map) alpha: float, blending factor vis_threshold: float, minimum normalized CAM value to show color Returns: PIL.Image.Image with overlay """ if cam is None: return image_pil w, h = image_pil.size size = max(w, h) # Normalize CAM to [0, 1] cam -= cam.min() cam /= cam.max() # Create heatmap using matplotlib colormap colormap = cm.get_cmap('inferno') cam_rgb = colormap(cam)[:, :, :3] # RGB # Create alpha channel cam_alpha = (cam >= vis_threshold).astype(np.float32) * alpha # Alpha mask cam_rgba = np.dstack((cam_rgb, cam_alpha)) # Shape: (H, W, 4) # Coarse upscale for CAM output -- keeps "blocky" effect that is truer to what is measured cam_pil = Image.fromarray((cam_rgba * 255).astype(np.uint8), mode="RGBA") cam_pil = cam_pil.resize((216,216), resample=Image.Resampling.NEAREST) # Model uses padded image as input, this matches attention map to input image aspect ratio cam_pil = cam_pil.resize((size, size), resample=Image.Resampling.BICUBIC) cam_pil = transforms.CenterCrop((h, w))(cam_pil) # Composite over original composite = Image.alpha_composite(image_pil, cam_pil) return composite class ImageDataset(Dataset): def __init__(self, image_files, transform): self.image_files = image_files self.transform = transform def __len__(self): return len(self.image_files) def __getitem__(self, idx): img_path = self.image_files[idx] img = Image.open(img_path).convert('RGB') return self.transform(img), os.path.basename(img_path) def measure_duration(images, threshold) -> int: return ceil(len(images) / 64) * 5 + 3 @dynGPU(duration=measure_duration) def process_images(images, threshold): dataset = ImageDataset(images, transform) dataloader = DataLoader(dataset, batch_size=64, num_workers=0, pin_memory=True, drop_last=False) all_results = [] with torch.no_grad(): for batch, filenames in dataloader: batch = batch.to(device) probabilities = model(batch) for i, prob in enumerate(probabilities): indices = torch.where(prob > threshold)[0] values = prob[indices] temp = [] tag_score = dict() for j in range(indices.size(0)): tag = allowed_tags[indices[j]] score = values[j].item() temp.append([tag, score]) tag_score[tag] = score tags = ", ".join([t[0] for t in temp]) all_results.append((filenames[i], tags, tag_score)) print(all_results) return all_results def is_valid_image(file_path): try: with Image.open(file_path) as img: img.verify() return True except: return False def process_zip(zip_file, threshold): if zip_file is None: return None, None with tempfile.TemporaryDirectory() as temp_dir: with zipfile.ZipFile(zip_file.name, 'r') as zip_ref: zip_ref.extractall(temp_dir) all_files = [] for root, _, files in os.walk(temp_dir): for file in files: all_files.append(os.path.join(root, file)) image_files = [f for f in all_files if is_valid_image(f)] results = process_images(image_files, threshold) temp_file = NamedTemporaryFile(delete=False, suffix=".zip") with zipfile.ZipFile(temp_file, "w") as zip_ref: for image_name, text_no_impl, _ in results: txt_filename = ''.join(image_name.split('.')[:-1]) + ".txt" with zip_ref.open(txt_filename, 'w') as file: file.write(text_no_impl.encode()) temp_file.seek(0) df = pd.DataFrame([(os.path.basename(f), t) for f, t, _ in results], columns=['Image', 'Tags']) return temp_file.name, df custom_css = """ .output-class { display: none; } .inferno-slider input[type=range] { background: linear-gradient(to right, #000004, #1b0c41, #4a0c6b, #781c6d, #a52c60, #cf4446, #ed6925, #fb9b06, #f7d13d, #fcffa4 ) !important; background-size: 100% 100% !important; } #image_container-image { width: 100%; aspect-ratio: 1 / 1; max-height: 100%; } #image_container img { object-fit: contain !important; } """ with gr.Blocks(css=custom_css) as demo: gr.Markdown(""" ## Joint Tagger Project: JTP-PILOT² Demo **BETA** """) with gr.Tabs(): with gr.TabItem("Single Image"): original_image_state = gr.State() # stash a copy of the input image sorted_tag_score_state = gr.State(value={}) # stash a copy of the input image cam_state = gr.State() with gr.Row(): with gr.Column(): image = gr.Image(label="Source", sources=['upload', 'clipboard'], type='pil', show_label=False, elem_id="image_container") cam_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.40, label="CAM Threshold", elem_classes="inferno-slider") alpha_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.60, label="CAM Alpha") with gr.Column(): tag_string = gr.Textbox(label="Tag String") threshold_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Tag Threshold") label_box = gr.Label(label="Tag Predictions", num_top_classes=250, show_label=False) image.upload( fn=run_classifier, inputs=[image, threshold_slider], outputs=[tag_string, label_box, original_image_state, sorted_tag_score_state], show_progress='minimal' ) image.clear( fn=clear_image, inputs=[], outputs=[tag_string, label_box, original_image_state, sorted_tag_score_state, cam_state] ) threshold_slider.input( fn=create_tags, inputs=[threshold_slider, sorted_tag_score_state], outputs=[tag_string, label_box], show_progress='hidden' ) label_box.select( fn=cam_inference, inputs=[original_image_state, cam_slider, alpha_slider], outputs=[image, cam_state], show_progress='minimal' ) cam_slider.input( fn=create_cam_visualization_pil, inputs=[original_image_state, cam_state, alpha_slider, cam_slider], outputs=[image], show_progress='hidden' ) alpha_slider.input( fn=create_cam_visualization_pil, inputs=[original_image_state, cam_state, alpha_slider, cam_slider], outputs=[image], show_progress='hidden' ) with gr.TabItem("Multiple Images"): with gr.Row(): with gr.Column(): zip_input = gr.File(label="Upload ZIP file", file_types=['.zip']) multi_threshold_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Threshold") process_button = gr.Button("Process Images") with gr.Column(): zip_output = gr.File(label="Download Tagged Text Files (ZIP)") dataframe_output = gr.Dataframe(label="Image Tags Summary") process_button.click( fn=process_zip, inputs=[zip_input, multi_threshold_slider], outputs=[zip_output, dataframe_output] ) gr.Markdown(""" This tagger is designed for use on furry images (though may very well work on out-of-distribution images, potentially with funny results). A threshold of 0.2 is recommended. Lower thresholds often turn up more valid tags, but can also result in some amount of hallucinated tags. This tagger is the result of joint efforts between members of the RedRocket team, with distinctions given to Thessalo for creating the foundation for this project with his efforts, RedHotTensors for redesigning the process into a second-order method that models information expectation, and drhead for dataset prep, creation of training code and supervision of training runs. Special thanks to Minotoro at frosting.ai for providing the compute power for this project. """) if __name__ == "__main__": demo.launch()