imgprivllm / blurnonymize.py
hugohabicht01
further fix
af83bc0
import os
import traceback
from typing import Literal, Optional
import cv2
import matplotlib.patches as patches
import matplotlib.pyplot as plt
import numpy as np
import torch
from sam2.sam2_image_predictor import SAM2ImagePredictor
from utils import *
# --- Utility Functions (kept outside the class) ---
def blur_image(img: np.ndarray):
"""Applies Gaussian blur to an image."""
return cv2.GaussianBlur(img, (35, 35), 50)
def plot_polygon_mask(image: np.ndarray, polygons: list[list[tuple[int, int]]]):
"""
Plots polygon-based segmentation masks on top of an image.
"""
plt.imshow(image)
for polygon in polygons:
if not polygon:
continue # Skip empty polygons
polygon_array = np.array(polygon).reshape(-1, 2)
x, y = zip(*polygon_array)
x = list(x) + [x[0]]
y = list(y) + [y[0]]
plt.plot(x, y, "-r", linewidth=2)
plt.axis("off")
plt.tight_layout()
plt.show()
def visualize_boxes(image, findings):
"""Visualizes bounding boxes on an image."""
fig, ax = plt.subplots(1)
ax.imshow(image)
colors = ["r", "g", "b", "c", "m", "y", "k"]
for i, finding in enumerate(findings):
[x_min, y_min, x_max, y_max] = finding.bounding_box
color = colors[i % len(colors)]
rect = patches.Rectangle(
(x_min, y_min),
x_max - x_min,
y_max - y_min,
linewidth=2,
edgecolor=color,
facecolor="none",
)
ax.add_patch(rect)
print(f"Finding {i + 1} (Color: {color}):")
if not findings:
print("No findings")
plt.xticks(np.arange(0, image.shape[1], 50))
plt.yticks(np.arange(0, image.shape[0], 50))
plt.show()
# --- SAM Visualization Helpers (kept outside the class) ---
def show_mask(mask, ax, random_color=False, borders=True):
"""Displays a single mask on a matplotlib axis."""
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
h, w = mask.shape[-2:]
mask = mask.astype(np.uint8)
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
if borders:
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
# contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours] # Optional smoothing
mask_image = cv2.drawContours(
mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2
)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
"""Displays points (positive/negative) on a matplotlib axis."""
pos_points = coords[labels == 1]
neg_points = coords[labels == 0]
ax.scatter(
pos_points[:, 0],
pos_points[:, 1],
color="green",
marker="*",
s=marker_size,
edgecolor="white",
linewidth=1.25,
)
ax.scatter(
neg_points[:, 0],
neg_points[:, 1],
color="red",
marker="*",
s=marker_size,
edgecolor="white",
linewidth=1.25,
)
def show_box(box, ax):
"""Displays a bounding box on a matplotlib axis."""
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(
plt.Rectangle((x0, y0), w, h, edgecolor="green", facecolor=(0, 0, 0, 0), lw=2)
)
def show_masks(
image,
masks,
scores,
point_coords=None,
box_coords=None,
input_labels=None,
borders=True,
):
"""Displays multiple masks resulting from SAM prediction."""
for i, (mask, score) in enumerate(zip(masks, scores)):
plt.figure(figsize=(10, 10))
plt.imshow(image)
show_mask(mask, plt.gca(), borders=borders)
if point_coords is not None:
assert input_labels is not None
show_points(point_coords, input_labels, plt.gca())
if box_coords is not None:
show_box(box_coords, plt.gca())
if len(scores) > 1:
plt.title(f"Mask {i + 1}, Score: {score:.3f}", fontsize=18)
plt.axis("off")
plt.show()
# --- ImageBlurnonymizer Class ---
class ImageBlurnonymizer:
def __init__(self):
self.predictor = None
self.device = None
self.init_sam()
def init_sam(self, force=False):
# only initialize SAM if it hasn't been initialized yet
if self.predictor is not None and not force:
return
# self.device = "cuda" if torch.cuda.is_available() else "cpu"
# self.device = "cuda"
self.device = "cuda"
# Set the device for PyTorch
self.predictor = SAM2ImagePredictor.from_pretrained(
"facebook/sam2.1-hiera-small",
device=self.device,
)
@staticmethod
def _smoothen_mask(mask: np.ndarray):
"""Applies morphological closing to smoothen mask boundaries."""
kernel = np.ones((20, 20), np.uint8)
return cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
@staticmethod
def _mask_from_bbox(image_shape, bbox: tuple[int, int, int, int]):
"""Creates a simple rectangular mask from a bounding box."""
height, width, *_ = image_shape # Allow for 2D or 3D shape tuple
xmin, ymin, xmax, ymax = bbox
mask = np.zeros((height, width), dtype=np.uint8)
mask[ymin:ymax, xmin:xmax] = 1
return mask # No need for np.array() conversion
@staticmethod
def _apply_blur_mask(image: np.ndarray, mask: np.ndarray):
"""Applies a blur to an image based on a mask."""
if mask.ndim == 2: # Ensure mask is 3-channel for broadcasting
mask = np.stack((mask,) * image.shape[2], axis=-1)
blurred = blur_image(image) # Use the utility function
return np.where(mask, blurred, image)
@staticmethod
def _binary_mask_to_polygon(binary_mask: np.ndarray, epsilon=2.0):
"""Converts a binary segmentation mask to polygon contours."""
try:
converted = (binary_mask * 255).astype(np.uint8)
# Use RETR_TREE to get hierarchy, CHAIN_APPROX_SIMPLE for efficiency
contours, _ = cv2.findContours(
converted, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
polygons = []
for contour in contours:
approx_contour = cv2.approxPolyDP(contour, epsilon, True)
# Ensure points are converted correctly
polygon = [
(int(point[0][0]), int(point[0][1])) for point in approx_contour
]
polygons.append(polygon)
return polygons
except Exception as e:
print(f"An error occurred during polygon conversion: {e}")
print(traceback.format_exc())
return None # Return None on error
def get_segmentation_mask(self, image: np.ndarray, bbox: tuple[int, int, int, int]):
"""
Generates a segmentation mask for a region defined by a bounding box using SAM.
Adds points within the bounding box to guide SAM towards the intended object (e.g., face)
and away from surrounding elements (e.g., hair).
"""
if self.predictor is None:
raise Exception("[-] sam has not been initialized")
# if torch.cuda.is_available() and self.device == "cpu":
# # class instance was wrongly initialized to run on cpu, but gpu is avaiable
# self.init_sam(force=True)
x_min, y_min, x_max, y_max = bbox
x_width = x_max - x_min
y_height = y_max - y_min # Corrected variable name
# Handle cases where box dimensions are too small for third calculations
x_third = x_width // 3 if x_width >= 3 else 0
y_third = y_height // 3 if y_height >= 3 else 0
center_point = [(x_min + x_max) // 2, (y_min + y_max) // 2]
# Define points ensuring they stay within the image boundaries
points = [center_point]
if y_third > 0:
points.append([center_point[0], center_point[1] - y_third])
points.append([center_point[0], center_point[1] + y_third])
if x_third > 0:
points.append([center_point[0] + x_third, center_point[1]])
points.append([center_point[0] - x_third, center_point[1]])
# Ensure points are valid coordinates (e.g., non-negative)
points = [[max(0, p[0]), max(0, p[1])] for p in points]
with torch.inference_mode(), torch.autocast(self.device, dtype=torch.bfloat16):
self.predictor.set_image(image)
masks, scores, _ = self.predictor.predict(
box=np.array(bbox), # Predictor might expect numpy array
point_coords=np.array(points),
point_labels=np.ones(len(points)), # Label 1 for inclusion
multimask_output=True,
)
# Sort masks by score and select the best one
sorted_ind = np.argsort(scores)[::-1]
best_mask = masks[sorted_ind[0]]
best_score = scores[sorted_ind[0]]
return self._smoothen_mask(best_mask), best_score
def censor_image_blur(
self,
image: np.ndarray,
raw_out: str,
method: Optional[Literal["segmentation", "bbox"]] = "segmentation",
verbose=False,
):
"""
Censors an image by blurring regions identified in the raw_out string (LLM output).
"""
self.init_sam()
json_output = parse_json_response(raw_out)
# Ensure json_output is a list before passing to parse_into_models
if isinstance(json_output, dict):
findings_list = [json_output]
elif isinstance(json_output, list):
findings_list = json_output
else:
# Handle unexpected type or raise an error
print(
f"Warning: Unexpected output type from parse_json_response: {type(json_output)}"
)
findings_list = []
parsed = parse_into_models(findings_list) # type: ignore
# Filter findings based on severity
filtered = [entry for entry in parsed if entry.severity > 0]
if verbose:
visualize_boxes(image, filtered) # Use external visualization
masks = []
for finding in filtered:
bbox = (
finding.bounding_box
) # Assuming finding has a 'bounding_box' attribute
if method == "segmentation":
mask, _ = self.get_segmentation_mask(image, bbox) # Use instance method
if verbose:
polygons = self._binary_mask_to_polygon(mask)
if polygons: # Check if polygon conversion was successful
plot_polygon_mask(image, polygons) # Use external visualization
elif method == "bbox":
mask = self._mask_from_bbox(image.shape, bbox) # Use static method
else:
print(
f"Warning: Unknown method '{method}'. Defaulting to no mask for this finding."
)
continue # Skip if method is invalid
masks.append(mask)
if masks: # Check if any masks were generated
# Combine masks: logical OR ensures any pixel in any mask is included
combined_mask = np.zeros_like(masks[0], dtype=np.uint8)
for mask in masks:
# Ensure masks are boolean or uint8 for logical_or
combined_mask = np.logical_or(combined_mask, mask.astype(bool)).astype(
np.uint8
)
return self._apply_blur_mask(image, combined_mask) # Use static method
return image # Return original image if no masks
def censor_image_blur_easy(
self,
image: np.ndarray,
boxes: list[BoundingBox],
method: Optional[Literal["segmentation", "bbox"]] = "segmentation",
verbose=False,
):
"""
Censors an image by blurring regions defined by a list of BoundingBox objects.
"""
self.init_sam()
# method = "bbox"
masks = []
for box in boxes:
bbox_tuple = box.to_tuple() # Convert BoundingBox object to tuple
if method == "segmentation":
mask, _ = self.get_segmentation_mask(image, bbox_tuple)
if verbose:
polygons = self._binary_mask_to_polygon(mask)
if polygons:
plot_polygon_mask(image, polygons)
elif method == "bbox":
mask = self._mask_from_bbox(image.shape, bbox_tuple)
else:
print(
f"Warning: Unknown method '{method}'. Defaulting to no mask for this box."
)
continue
masks.append(mask)
if masks:
combined_mask = np.zeros_like(masks[0], dtype=np.uint8)
for mask in masks:
combined_mask = np.logical_or(combined_mask, mask.astype(bool)).astype(
np.uint8
)
return self._apply_blur_mask(image, combined_mask)
return image
# Example Usage (Optional - keep outside class):
# if __name__ == '__main__':
# # Load an image
# # img = cv2.imread('path/to/your/image.jpg')
# # img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Convert to RGB for matplotlib
# # Create an instance of the blurnonymizer
# # blurnonymizer = ImageBlurnonymizer()
# # Define bounding boxes or get raw LLM output
# # example_boxes = [BoundingBox(xmin=100, ymin=100, xmax=200, ymax=200)] # Assuming BoundingBox class exists
# # llm_output = '...' # Your raw LLM output string
# # Censor the image
# # censored_img_easy = blurnonymizer.censor_image_blur_easy(img, example_boxes, method='segmentation', verbose=True)
# # censored_img_llm = blurnonymizer.censor_image_blur(img, llm_output, method='segmentation', verbose=True)
# # Display or save the result
# # plt.imshow(censored_img_easy)
# # plt.show()