File size: 14,252 Bytes
dae4d1c
335bcd6
 
 
 
 
 
 
 
 
 
 
 
 
 
dae4d1c
335bcd6
 
 
 
 
 
 
 
 
 
 
dae4d1c
 
335bcd6
 
 
 
dae4d1c
 
335bcd6
 
 
 
 
 
 
 
dae4d1c
335bcd6
 
 
dae4d1c
 
 
 
 
 
 
 
335bcd6
 
 
 
 
 
 
 
dae4d1c
335bcd6
 
dae4d1c
335bcd6
 
 
 
 
 
 
 
 
 
 
 
dae4d1c
 
 
335bcd6
 
dae4d1c
335bcd6
 
 
 
dae4d1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335bcd6
 
 
 
 
dae4d1c
 
 
 
 
 
 
 
 
 
 
 
 
 
335bcd6
 
 
 
 
 
 
 
 
 
 
 
dae4d1c
335bcd6
 
 
 
 
dae4d1c
335bcd6
dae4d1c
 
 
 
 
 
 
 
 
 
 
ff46b3e
915a67a
af83bc0
915a67a
 
 
af83bc0
d715937
335bcd6
 
 
 
 
 
 
 
 
 
dae4d1c
335bcd6
 
 
dae4d1c
335bcd6
 
 
 
dae4d1c
 
 
335bcd6
 
 
 
 
 
 
 
dae4d1c
 
 
335bcd6
 
 
 
dae4d1c
 
 
335bcd6
 
 
 
 
dae4d1c
335bcd6
 
 
 
 
 
 
 
dae4d1c
 
 
 
ff46b3e
 
 
dae4d1c
335bcd6
 
dae4d1c
335bcd6
 
 
 
 
 
 
 
 
 
 
 
 
dae4d1c
 
335bcd6
 
 
 
5ea22b8
d528373
 
 
 
 
 
 
335bcd6
d528373
 
 
 
335bcd6
d528373
335bcd6
dae4d1c
 
 
 
 
 
 
335bcd6
 
 
dae4d1c
335bcd6
 
 
 
 
 
 
dae4d1c
 
 
 
 
335bcd6
dae4d1c
335bcd6
 
 
 
dae4d1c
335bcd6
 
 
dae4d1c
 
 
 
 
335bcd6
 
dae4d1c
 
 
 
335bcd6
dae4d1c
 
 
 
335bcd6
 
 
dae4d1c
335bcd6
 
 
 
dae4d1c
 
 
 
 
 
 
 
 
 
 
 
 
 
335bcd6
 
 
dae4d1c
915a67a
335bcd6
 
dae4d1c
 
335bcd6
 
 
 
 
dae4d1c
335bcd6
 
dae4d1c
 
 
 
335bcd6
 
 
 
 
 
dae4d1c
 
 
335bcd6
 
 
 
dae4d1c
335bcd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import os
import traceback
from typing import Literal, Optional

import cv2
import matplotlib.patches as patches
import matplotlib.pyplot as plt
import numpy as np
import torch
from sam2.sam2_image_predictor import SAM2ImagePredictor
from utils import *


# --- Utility Functions (kept outside the class) ---


def blur_image(img: np.ndarray):
    """Applies Gaussian blur to an image."""
    return cv2.GaussianBlur(img, (35, 35), 50)


def plot_polygon_mask(image: np.ndarray, polygons: list[list[tuple[int, int]]]):
    """
    Plots polygon-based segmentation masks on top of an image.
    """
    plt.imshow(image)
    for polygon in polygons:
        if not polygon:
            continue  # Skip empty polygons
        polygon_array = np.array(polygon).reshape(-1, 2)
        x, y = zip(*polygon_array)
        x = list(x) + [x[0]]
        y = list(y) + [y[0]]
        plt.plot(x, y, "-r", linewidth=2)
    plt.axis("off")
    plt.tight_layout()
    plt.show()


def visualize_boxes(image, findings):
    """Visualizes bounding boxes on an image."""
    fig, ax = plt.subplots(1)
    ax.imshow(image)
    colors = ["r", "g", "b", "c", "m", "y", "k"]
    for i, finding in enumerate(findings):
        [x_min, y_min, x_max, y_max] = finding.bounding_box
        color = colors[i % len(colors)]
        rect = patches.Rectangle(
            (x_min, y_min),
            x_max - x_min,
            y_max - y_min,
            linewidth=2,
            edgecolor=color,
            facecolor="none",
        )
        ax.add_patch(rect)
        print(f"Finding {i + 1} (Color: {color}):")
    if not findings:
        print("No findings")
    plt.xticks(np.arange(0, image.shape[1], 50))
    plt.yticks(np.arange(0, image.shape[0], 50))
    plt.show()


# --- SAM Visualization Helpers (kept outside the class) ---


def show_mask(mask, ax, random_color=False, borders=True):
    """Displays a single mask on a matplotlib axis."""
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
    h, w = mask.shape[-2:]
    mask = mask.astype(np.uint8)
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    if borders:
        contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
        # contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours] # Optional smoothing
        mask_image = cv2.drawContours(
            mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2
        )
    ax.imshow(mask_image)


def show_points(coords, labels, ax, marker_size=375):
    """Displays points (positive/negative) on a matplotlib axis."""
    pos_points = coords[labels == 1]
    neg_points = coords[labels == 0]
    ax.scatter(
        pos_points[:, 0],
        pos_points[:, 1],
        color="green",
        marker="*",
        s=marker_size,
        edgecolor="white",
        linewidth=1.25,
    )
    ax.scatter(
        neg_points[:, 0],
        neg_points[:, 1],
        color="red",
        marker="*",
        s=marker_size,
        edgecolor="white",
        linewidth=1.25,
    )


def show_box(box, ax):
    """Displays a bounding box on a matplotlib axis."""
    x0, y0 = box[0], box[1]
    w, h = box[2] - box[0], box[3] - box[1]
    ax.add_patch(
        plt.Rectangle((x0, y0), w, h, edgecolor="green", facecolor=(0, 0, 0, 0), lw=2)
    )


def show_masks(
    image,
    masks,
    scores,
    point_coords=None,
    box_coords=None,
    input_labels=None,
    borders=True,
):
    """Displays multiple masks resulting from SAM prediction."""
    for i, (mask, score) in enumerate(zip(masks, scores)):
        plt.figure(figsize=(10, 10))
        plt.imshow(image)
        show_mask(mask, plt.gca(), borders=borders)
        if point_coords is not None:
            assert input_labels is not None
            show_points(point_coords, input_labels, plt.gca())
        if box_coords is not None:
            show_box(box_coords, plt.gca())
        if len(scores) > 1:
            plt.title(f"Mask {i + 1}, Score: {score:.3f}", fontsize=18)
        plt.axis("off")
        plt.show()


# --- ImageBlurnonymizer Class ---


class ImageBlurnonymizer:
    def __init__(self):
        self.predictor = None
        self.device = None

        self.init_sam()

    def init_sam(self, force=False):
        # only initialize SAM if it hasn't been initialized yet
        if self.predictor is not None and not force:
            return

        # self.device = "cuda" if torch.cuda.is_available() else "cpu"
        # self.device = "cuda"
        self.device = "cuda"
        # Set the device for PyTorch
        self.predictor = SAM2ImagePredictor.from_pretrained(
            "facebook/sam2.1-hiera-small",
            device=self.device,
        )

    @staticmethod
    def _smoothen_mask(mask: np.ndarray):
        """Applies morphological closing to smoothen mask boundaries."""
        kernel = np.ones((20, 20), np.uint8)
        return cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)

    @staticmethod
    def _mask_from_bbox(image_shape, bbox: tuple[int, int, int, int]):
        """Creates a simple rectangular mask from a bounding box."""
        height, width, *_ = image_shape  # Allow for 2D or 3D shape tuple
        xmin, ymin, xmax, ymax = bbox
        mask = np.zeros((height, width), dtype=np.uint8)
        mask[ymin:ymax, xmin:xmax] = 1
        return mask  # No need for np.array() conversion

    @staticmethod
    def _apply_blur_mask(image: np.ndarray, mask: np.ndarray):
        """Applies a blur to an image based on a mask."""
        if mask.ndim == 2:  # Ensure mask is 3-channel for broadcasting
            mask = np.stack((mask,) * image.shape[2], axis=-1)
        blurred = blur_image(image)  # Use the utility function
        return np.where(mask, blurred, image)

    @staticmethod
    def _binary_mask_to_polygon(binary_mask: np.ndarray, epsilon=2.0):
        """Converts a binary segmentation mask to polygon contours."""
        try:
            converted = (binary_mask * 255).astype(np.uint8)
            # Use RETR_TREE to get hierarchy, CHAIN_APPROX_SIMPLE for efficiency
            contours, _ = cv2.findContours(
                converted, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
            )
            polygons = []
            for contour in contours:
                approx_contour = cv2.approxPolyDP(contour, epsilon, True)
                # Ensure points are converted correctly
                polygon = [
                    (int(point[0][0]), int(point[0][1])) for point in approx_contour
                ]
                polygons.append(polygon)
            return polygons
        except Exception as e:
            print(f"An error occurred during polygon conversion: {e}")
            print(traceback.format_exc())
            return None  # Return None on error

    def get_segmentation_mask(self, image: np.ndarray, bbox: tuple[int, int, int, int]):
        """
        Generates a segmentation mask for a region defined by a bounding box using SAM.

        Adds points within the bounding box to guide SAM towards the intended object (e.g., face)
        and away from surrounding elements (e.g., hair).
        """

        if self.predictor is None:
            raise Exception("[-] sam has not been initialized")

        # if torch.cuda.is_available() and self.device == "cpu":
        #     # class instance was wrongly initialized to run on cpu, but gpu is avaiable
        #     self.init_sam(force=True)

        x_min, y_min, x_max, y_max = bbox
        x_width = x_max - x_min
        y_height = y_max - y_min  # Corrected variable name

        # Handle cases where box dimensions are too small for third calculations
        x_third = x_width // 3 if x_width >= 3 else 0
        y_third = y_height // 3 if y_height >= 3 else 0

        center_point = [(x_min + x_max) // 2, (y_min + y_max) // 2]

        # Define points ensuring they stay within the image boundaries
        points = [center_point]
        if y_third > 0:
            points.append([center_point[0], center_point[1] - y_third])
            points.append([center_point[0], center_point[1] + y_third])
        if x_third > 0:
            points.append([center_point[0] + x_third, center_point[1]])
            points.append([center_point[0] - x_third, center_point[1]])

        # Ensure points are valid coordinates (e.g., non-negative)
        points = [[max(0, p[0]), max(0, p[1])] for p in points]

        with torch.inference_mode(), torch.autocast(self.device, dtype=torch.bfloat16):
            self.predictor.set_image(image)
            masks, scores, _ = self.predictor.predict(
                box=np.array(bbox),  # Predictor might expect numpy array
                point_coords=np.array(points),
                point_labels=np.ones(len(points)),  # Label 1 for inclusion
                multimask_output=True,
            )

            # Sort masks by score and select the best one
            sorted_ind = np.argsort(scores)[::-1]
            best_mask = masks[sorted_ind[0]]
            best_score = scores[sorted_ind[0]]

            return self._smoothen_mask(best_mask), best_score

    def censor_image_blur(
        self,
        image: np.ndarray,
        raw_out: str,
        method: Optional[Literal["segmentation", "bbox"]] = "segmentation",
        verbose=False,
    ):
        """
        Censors an image by blurring regions identified in the raw_out string (LLM output).
        """
        self.init_sam()
        json_output = parse_json_response(raw_out)
        # Ensure json_output is a list before passing to parse_into_models
        if isinstance(json_output, dict):
            findings_list = [json_output]
        elif isinstance(json_output, list):
            findings_list = json_output
        else:
            # Handle unexpected type or raise an error
            print(
                f"Warning: Unexpected output type from parse_json_response: {type(json_output)}"
            )
            findings_list = []

        parsed = parse_into_models(findings_list) # type: ignore
        # Filter findings based on severity
        filtered = [entry for entry in parsed if entry.severity > 0]

        if verbose:
            visualize_boxes(image, filtered)  # Use external visualization

        masks = []
        for finding in filtered:
            bbox = (
                finding.bounding_box
            )  # Assuming finding has a 'bounding_box' attribute
            if method == "segmentation":
                mask, _ = self.get_segmentation_mask(image, bbox)  # Use instance method
                if verbose:
                    polygons = self._binary_mask_to_polygon(mask)
                    if polygons:  # Check if polygon conversion was successful
                        plot_polygon_mask(image, polygons)  # Use external visualization
            elif method == "bbox":
                mask = self._mask_from_bbox(image.shape, bbox)  # Use static method
            else:
                print(
                    f"Warning: Unknown method '{method}'. Defaulting to no mask for this finding."
                )
                continue  # Skip if method is invalid

            masks.append(mask)

        if masks:  # Check if any masks were generated
            # Combine masks: logical OR ensures any pixel in any mask is included
            combined_mask = np.zeros_like(masks[0], dtype=np.uint8)
            for mask in masks:
                # Ensure masks are boolean or uint8 for logical_or
                combined_mask = np.logical_or(combined_mask, mask.astype(bool)).astype(
                    np.uint8
                )

            return self._apply_blur_mask(image, combined_mask)  # Use static method
        return image  # Return original image if no masks

    def censor_image_blur_easy(
        self,
        image: np.ndarray,
        boxes: list[BoundingBox],
        method: Optional[Literal["segmentation", "bbox"]] = "segmentation",
        verbose=False,
    ):
        """
        Censors an image by blurring regions defined by a list of BoundingBox objects.
        """
        self.init_sam()
        # method = "bbox"
        masks = []
        for box in boxes:
            bbox_tuple = box.to_tuple()  # Convert BoundingBox object to tuple
            if method == "segmentation":
                mask, _ = self.get_segmentation_mask(image, bbox_tuple)
                if verbose:
                    polygons = self._binary_mask_to_polygon(mask)
                    if polygons:
                        plot_polygon_mask(image, polygons)
            elif method == "bbox":
                mask = self._mask_from_bbox(image.shape, bbox_tuple)
            else:
                print(
                    f"Warning: Unknown method '{method}'. Defaulting to no mask for this box."
                )
                continue

            masks.append(mask)

        if masks:
            combined_mask = np.zeros_like(masks[0], dtype=np.uint8)
            for mask in masks:
                combined_mask = np.logical_or(combined_mask, mask.astype(bool)).astype(
                    np.uint8
                )

            return self._apply_blur_mask(image, combined_mask)
        return image


# Example Usage (Optional - keep outside class):
# if __name__ == '__main__':
#     # Load an image
#     # img = cv2.imread('path/to/your/image.jpg')
#     # img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Convert to RGB for matplotlib

#     # Create an instance of the blurnonymizer
#     # blurnonymizer = ImageBlurnonymizer()

#     # Define bounding boxes or get raw LLM output
#     # example_boxes = [BoundingBox(xmin=100, ymin=100, xmax=200, ymax=200)] # Assuming BoundingBox class exists
#     # llm_output = '...' # Your raw LLM output string

#     # Censor the image
#     # censored_img_easy = blurnonymizer.censor_image_blur_easy(img, example_boxes, method='segmentation', verbose=True)
#     # censored_img_llm = blurnonymizer.censor_image_blur(img, llm_output, method='segmentation', verbose=True)

#     # Display or save the result
#     # plt.imshow(censored_img_easy)
#     # plt.show()