cavargas10 commited on
Commit
5668340
·
verified ·
1 Parent(s): 0058b7c

Upload 26 files

Browse files
trellis/modules/attention/__init__.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+
3
+ BACKEND = 'flash_attn'
4
+ DEBUG = False
5
+
6
+ def __from_env():
7
+ import os
8
+
9
+ global BACKEND
10
+ global DEBUG
11
+
12
+ env_attn_backend = os.environ.get('ATTN_BACKEND')
13
+ env_sttn_debug = os.environ.get('ATTN_DEBUG')
14
+
15
+ if env_attn_backend is not None and env_attn_backend in ['xformers', 'flash_attn', 'sdpa', 'naive']:
16
+ BACKEND = env_attn_backend
17
+ if env_sttn_debug is not None:
18
+ DEBUG = env_sttn_debug == '1'
19
+
20
+ print(f"[ATTENTION] Using backend: {BACKEND}")
21
+
22
+
23
+ __from_env()
24
+
25
+
26
+ def set_backend(backend: Literal['xformers', 'flash_attn']):
27
+ global BACKEND
28
+ BACKEND = backend
29
+
30
+ def set_debug(debug: bool):
31
+ global DEBUG
32
+ DEBUG = debug
33
+
34
+
35
+ from .full_attn import *
36
+ from .modules import *
trellis/modules/attention/full_attn.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+ import torch
3
+ import math
4
+ from . import DEBUG, BACKEND
5
+
6
+ if BACKEND == 'xformers':
7
+ import xformers.ops as xops
8
+ elif BACKEND == 'flash_attn':
9
+ import flash_attn
10
+ elif BACKEND == 'sdpa':
11
+ from torch.nn.functional import scaled_dot_product_attention as sdpa
12
+ elif BACKEND == 'naive':
13
+ pass
14
+ else:
15
+ raise ValueError(f"Unknown attention backend: {BACKEND}")
16
+
17
+
18
+ __all__ = [
19
+ 'scaled_dot_product_attention',
20
+ ]
21
+
22
+
23
+ def _naive_sdpa(q, k, v):
24
+ """
25
+ Naive implementation of scaled dot product attention.
26
+ """
27
+ q = q.permute(0, 2, 1, 3) # [N, H, L, C]
28
+ k = k.permute(0, 2, 1, 3) # [N, H, L, C]
29
+ v = v.permute(0, 2, 1, 3) # [N, H, L, C]
30
+ scale_factor = 1 / math.sqrt(q.size(-1))
31
+ attn_weight = q @ k.transpose(-2, -1) * scale_factor
32
+ attn_weight = torch.softmax(attn_weight, dim=-1)
33
+ out = attn_weight @ v
34
+ out = out.permute(0, 2, 1, 3) # [N, L, H, C]
35
+ return out
36
+
37
+
38
+ @overload
39
+ def scaled_dot_product_attention(qkv: torch.Tensor) -> torch.Tensor:
40
+ """
41
+ Apply scaled dot product attention.
42
+
43
+ Args:
44
+ qkv (torch.Tensor): A [N, L, 3, H, C] tensor containing Qs, Ks, and Vs.
45
+ """
46
+ ...
47
+
48
+ @overload
49
+ def scaled_dot_product_attention(q: torch.Tensor, kv: torch.Tensor) -> torch.Tensor:
50
+ """
51
+ Apply scaled dot product attention.
52
+
53
+ Args:
54
+ q (torch.Tensor): A [N, L, H, C] tensor containing Qs.
55
+ kv (torch.Tensor): A [N, L, 2, H, C] tensor containing Ks and Vs.
56
+ """
57
+ ...
58
+
59
+ @overload
60
+ def scaled_dot_product_attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor:
61
+ """
62
+ Apply scaled dot product attention.
63
+
64
+ Args:
65
+ q (torch.Tensor): A [N, L, H, Ci] tensor containing Qs.
66
+ k (torch.Tensor): A [N, L, H, Ci] tensor containing Ks.
67
+ v (torch.Tensor): A [N, L, H, Co] tensor containing Vs.
68
+
69
+ Note:
70
+ k and v are assumed to have the same coordinate map.
71
+ """
72
+ ...
73
+
74
+ def scaled_dot_product_attention(*args, **kwargs):
75
+ arg_names_dict = {
76
+ 1: ['qkv'],
77
+ 2: ['q', 'kv'],
78
+ 3: ['q', 'k', 'v']
79
+ }
80
+ num_all_args = len(args) + len(kwargs)
81
+ assert num_all_args in arg_names_dict, f"Invalid number of arguments, got {num_all_args}, expected 1, 2, or 3"
82
+ for key in arg_names_dict[num_all_args][len(args):]:
83
+ assert key in kwargs, f"Missing argument {key}"
84
+
85
+ if num_all_args == 1:
86
+ qkv = args[0] if len(args) > 0 else kwargs['qkv']
87
+ assert len(qkv.shape) == 5 and qkv.shape[2] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, L, 3, H, C]"
88
+ device = qkv.device
89
+
90
+ elif num_all_args == 2:
91
+ q = args[0] if len(args) > 0 else kwargs['q']
92
+ kv = args[1] if len(args) > 1 else kwargs['kv']
93
+ assert q.shape[0] == kv.shape[0], f"Batch size mismatch, got {q.shape[0]} and {kv.shape[0]}"
94
+ assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, C]"
95
+ assert len(kv.shape) == 5, f"Invalid shape for kv, got {kv.shape}, expected [N, L, 2, H, C]"
96
+ device = q.device
97
+
98
+ elif num_all_args == 3:
99
+ q = args[0] if len(args) > 0 else kwargs['q']
100
+ k = args[1] if len(args) > 1 else kwargs['k']
101
+ v = args[2] if len(args) > 2 else kwargs['v']
102
+ assert q.shape[0] == k.shape[0] == v.shape[0], f"Batch size mismatch, got {q.shape[0]}, {k.shape[0]}, and {v.shape[0]}"
103
+ assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, Ci]"
104
+ assert len(k.shape) == 4, f"Invalid shape for k, got {k.shape}, expected [N, L, H, Ci]"
105
+ assert len(v.shape) == 4, f"Invalid shape for v, got {v.shape}, expected [N, L, H, Co]"
106
+ device = q.device
107
+
108
+ if BACKEND == 'xformers':
109
+ if num_all_args == 1:
110
+ q, k, v = qkv.unbind(dim=2)
111
+ elif num_all_args == 2:
112
+ k, v = kv.unbind(dim=2)
113
+ out = xops.memory_efficient_attention(q, k, v)
114
+ elif BACKEND == 'flash_attn':
115
+ if num_all_args == 1:
116
+ out = flash_attn.flash_attn_qkvpacked_func(qkv)
117
+ elif num_all_args == 2:
118
+ out = flash_attn.flash_attn_kvpacked_func(q, kv)
119
+ elif num_all_args == 3:
120
+ out = flash_attn.flash_attn_func(q, k, v)
121
+ elif BACKEND == 'sdpa':
122
+ if num_all_args == 1:
123
+ q, k, v = qkv.unbind(dim=2)
124
+ elif num_all_args == 2:
125
+ k, v = kv.unbind(dim=2)
126
+ q = q.permute(0, 2, 1, 3) # [N, H, L, C]
127
+ k = k.permute(0, 2, 1, 3) # [N, H, L, C]
128
+ v = v.permute(0, 2, 1, 3) # [N, H, L, C]
129
+ out = sdpa(q, k, v) # [N, H, L, C]
130
+ out = out.permute(0, 2, 1, 3) # [N, L, H, C]
131
+ elif BACKEND == 'naive':
132
+ if num_all_args == 1:
133
+ q, k, v = qkv.unbind(dim=2)
134
+ elif num_all_args == 2:
135
+ k, v = kv.unbind(dim=2)
136
+ out = _naive_sdpa(q, k, v)
137
+ else:
138
+ raise ValueError(f"Unknown attention module: {BACKEND}")
139
+
140
+ return out
trellis/modules/attention/modules.py ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ from .full_attn import scaled_dot_product_attention
6
+
7
+
8
+ class MultiHeadRMSNorm(nn.Module):
9
+ def __init__(self, dim: int, heads: int):
10
+ super().__init__()
11
+ self.scale = dim ** 0.5
12
+ self.gamma = nn.Parameter(torch.ones(heads, dim))
13
+
14
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
15
+ return (F.normalize(x.float(), dim = -1) * self.gamma * self.scale).to(x.dtype)
16
+
17
+
18
+ class RotaryPositionEmbedder(nn.Module):
19
+ def __init__(self, hidden_size: int, in_channels: int = 3):
20
+ super().__init__()
21
+ assert hidden_size % 2 == 0, "Hidden size must be divisible by 2"
22
+ self.hidden_size = hidden_size
23
+ self.in_channels = in_channels
24
+ self.freq_dim = hidden_size // in_channels // 2
25
+ self.freqs = torch.arange(self.freq_dim, dtype=torch.float32) / self.freq_dim
26
+ self.freqs = 1.0 / (10000 ** self.freqs)
27
+
28
+ def _get_phases(self, indices: torch.Tensor) -> torch.Tensor:
29
+ self.freqs = self.freqs.to(indices.device)
30
+ phases = torch.outer(indices, self.freqs)
31
+ phases = torch.polar(torch.ones_like(phases), phases)
32
+ return phases
33
+
34
+ def _rotary_embedding(self, x: torch.Tensor, phases: torch.Tensor) -> torch.Tensor:
35
+ x_complex = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
36
+ x_rotated = x_complex * phases
37
+ x_embed = torch.view_as_real(x_rotated).reshape(*x_rotated.shape[:-1], -1).to(x.dtype)
38
+ return x_embed
39
+
40
+ def forward(self, q: torch.Tensor, k: torch.Tensor, indices: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor]:
41
+ """
42
+ Args:
43
+ q (sp.SparseTensor): [..., N, D] tensor of queries
44
+ k (sp.SparseTensor): [..., N, D] tensor of keys
45
+ indices (torch.Tensor): [..., N, C] tensor of spatial positions
46
+ """
47
+ if indices is None:
48
+ indices = torch.arange(q.shape[-2], device=q.device)
49
+ if len(q.shape) > 2:
50
+ indices = indices.unsqueeze(0).expand(q.shape[:-2] + (-1,))
51
+
52
+ phases = self._get_phases(indices.reshape(-1)).reshape(*indices.shape[:-1], -1)
53
+ if phases.shape[1] < self.hidden_size // 2:
54
+ phases = torch.cat([phases, torch.polar(
55
+ torch.ones(*phases.shape[:-1], self.hidden_size // 2 - phases.shape[1], device=phases.device),
56
+ torch.zeros(*phases.shape[:-1], self.hidden_size // 2 - phases.shape[1], device=phases.device)
57
+ )], dim=-1)
58
+ q_embed = self._rotary_embedding(q, phases)
59
+ k_embed = self._rotary_embedding(k, phases)
60
+ return q_embed, k_embed
61
+
62
+
63
+ class MultiHeadAttention(nn.Module):
64
+ def __init__(
65
+ self,
66
+ channels: int,
67
+ num_heads: int,
68
+ ctx_channels: Optional[int]=None,
69
+ type: Literal["self", "cross"] = "self",
70
+ attn_mode: Literal["full", "windowed"] = "full",
71
+ window_size: Optional[int] = None,
72
+ shift_window: Optional[Tuple[int, int, int]] = None,
73
+ qkv_bias: bool = True,
74
+ use_rope: bool = False,
75
+ qk_rms_norm: bool = False,
76
+ ):
77
+ super().__init__()
78
+ assert channels % num_heads == 0
79
+ assert type in ["self", "cross"], f"Invalid attention type: {type}"
80
+ assert attn_mode in ["full", "windowed"], f"Invalid attention mode: {attn_mode}"
81
+ assert type == "self" or attn_mode == "full", "Cross-attention only supports full attention"
82
+
83
+ if attn_mode == "windowed":
84
+ raise NotImplementedError("Windowed attention is not yet implemented")
85
+
86
+ self.channels = channels
87
+ self.head_dim = channels // num_heads
88
+ self.ctx_channels = ctx_channels if ctx_channels is not None else channels
89
+ self.num_heads = num_heads
90
+ self._type = type
91
+ self.attn_mode = attn_mode
92
+ self.window_size = window_size
93
+ self.shift_window = shift_window
94
+ self.use_rope = use_rope
95
+ self.qk_rms_norm = qk_rms_norm
96
+
97
+ if self._type == "self":
98
+ self.to_qkv = nn.Linear(channels, channels * 3, bias=qkv_bias)
99
+ else:
100
+ self.to_q = nn.Linear(channels, channels, bias=qkv_bias)
101
+ self.to_kv = nn.Linear(self.ctx_channels, channels * 2, bias=qkv_bias)
102
+
103
+ if self.qk_rms_norm:
104
+ self.q_rms_norm = MultiHeadRMSNorm(self.head_dim, num_heads)
105
+ self.k_rms_norm = MultiHeadRMSNorm(self.head_dim, num_heads)
106
+
107
+ self.to_out = nn.Linear(channels, channels)
108
+
109
+ if use_rope:
110
+ self.rope = RotaryPositionEmbedder(channels)
111
+
112
+ def forward(self, x: torch.Tensor, context: Optional[torch.Tensor] = None, indices: Optional[torch.Tensor] = None) -> torch.Tensor:
113
+ B, L, C = x.shape
114
+ if self._type == "self":
115
+ qkv = self.to_qkv(x)
116
+ qkv = qkv.reshape(B, L, 3, self.num_heads, -1)
117
+ if self.use_rope:
118
+ q, k, v = qkv.unbind(dim=2)
119
+ q, k = self.rope(q, k, indices)
120
+ qkv = torch.stack([q, k, v], dim=2)
121
+ if self.attn_mode == "full":
122
+ if self.qk_rms_norm:
123
+ q, k, v = qkv.unbind(dim=2)
124
+ q = self.q_rms_norm(q)
125
+ k = self.k_rms_norm(k)
126
+ h = scaled_dot_product_attention(q, k, v)
127
+ else:
128
+ h = scaled_dot_product_attention(qkv)
129
+ elif self.attn_mode == "windowed":
130
+ raise NotImplementedError("Windowed attention is not yet implemented")
131
+ else:
132
+ Lkv = context.shape[1]
133
+ q = self.to_q(x)
134
+ kv = self.to_kv(context)
135
+ q = q.reshape(B, L, self.num_heads, -1)
136
+ kv = kv.reshape(B, Lkv, 2, self.num_heads, -1)
137
+ if self.qk_rms_norm:
138
+ q = self.q_rms_norm(q)
139
+ k, v = kv.unbind(dim=2)
140
+ k = self.k_rms_norm(k)
141
+ h = scaled_dot_product_attention(q, k, v)
142
+ else:
143
+ h = scaled_dot_product_attention(q, kv)
144
+ h = h.reshape(B, L, -1)
145
+ h = self.to_out(h)
146
+ return h
trellis/modules/norm.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+
5
+ class LayerNorm32(nn.LayerNorm):
6
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
7
+ return super().forward(x.float()).type(x.dtype)
8
+
9
+
10
+ class GroupNorm32(nn.GroupNorm):
11
+ """
12
+ A GroupNorm layer that converts to float32 before the forward pass.
13
+ """
14
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
15
+ return super().forward(x.float()).type(x.dtype)
16
+
17
+
18
+ class ChannelLayerNorm32(LayerNorm32):
19
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
20
+ DIM = x.dim()
21
+ x = x.permute(0, *range(2, DIM), 1).contiguous()
22
+ x = super().forward(x)
23
+ x = x.permute(0, DIM-1, *range(1, DIM-1)).contiguous()
24
+ return x
25
+
trellis/modules/sparse/__init__.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+
3
+ BACKEND = 'spconv'
4
+ DEBUG = False
5
+ ATTN = 'flash_attn'
6
+
7
+ def __from_env():
8
+ import os
9
+
10
+ global BACKEND
11
+ global DEBUG
12
+ global ATTN
13
+
14
+ env_sparse_backend = os.environ.get('SPARSE_BACKEND')
15
+ env_sparse_debug = os.environ.get('SPARSE_DEBUG')
16
+ env_sparse_attn = os.environ.get('SPARSE_ATTN_BACKEND')
17
+ if env_sparse_attn is None:
18
+ env_sparse_attn = os.environ.get('ATTN_BACKEND')
19
+
20
+ if env_sparse_backend is not None and env_sparse_backend in ['spconv', 'torchsparse']:
21
+ BACKEND = env_sparse_backend
22
+ if env_sparse_debug is not None:
23
+ DEBUG = env_sparse_debug == '1'
24
+ if env_sparse_attn is not None and env_sparse_attn in ['xformers', 'flash_attn']:
25
+ ATTN = env_sparse_attn
26
+
27
+ print(f"[SPARSE] Backend: {BACKEND}, Attention: {ATTN}")
28
+
29
+
30
+ __from_env()
31
+
32
+
33
+ def set_backend(backend: Literal['spconv', 'torchsparse']):
34
+ global BACKEND
35
+ BACKEND = backend
36
+
37
+ def set_debug(debug: bool):
38
+ global DEBUG
39
+ DEBUG = debug
40
+
41
+ def set_attn(attn: Literal['xformers', 'flash_attn']):
42
+ global ATTN
43
+ ATTN = attn
44
+
45
+
46
+ import importlib
47
+
48
+ __attributes = {
49
+ 'SparseTensor': 'basic',
50
+ 'sparse_batch_broadcast': 'basic',
51
+ 'sparse_batch_op': 'basic',
52
+ 'sparse_cat': 'basic',
53
+ 'sparse_unbind': 'basic',
54
+ 'SparseGroupNorm': 'norm',
55
+ 'SparseLayerNorm': 'norm',
56
+ 'SparseGroupNorm32': 'norm',
57
+ 'SparseLayerNorm32': 'norm',
58
+ 'SparseReLU': 'nonlinearity',
59
+ 'SparseSiLU': 'nonlinearity',
60
+ 'SparseGELU': 'nonlinearity',
61
+ 'SparseActivation': 'nonlinearity',
62
+ 'SparseLinear': 'linear',
63
+ 'sparse_scaled_dot_product_attention': 'attention',
64
+ 'SerializeMode': 'attention',
65
+ 'sparse_serialized_scaled_dot_product_self_attention': 'attention',
66
+ 'sparse_windowed_scaled_dot_product_self_attention': 'attention',
67
+ 'SparseMultiHeadAttention': 'attention',
68
+ 'SparseConv3d': 'conv',
69
+ 'SparseInverseConv3d': 'conv',
70
+ 'SparseDownsample': 'spatial',
71
+ 'SparseUpsample': 'spatial',
72
+ 'SparseSubdivide' : 'spatial'
73
+ }
74
+
75
+ __submodules = ['transformer']
76
+
77
+ __all__ = list(__attributes.keys()) + __submodules
78
+
79
+ def __getattr__(name):
80
+ if name not in globals():
81
+ if name in __attributes:
82
+ module_name = __attributes[name]
83
+ module = importlib.import_module(f".{module_name}", __name__)
84
+ globals()[name] = getattr(module, name)
85
+ elif name in __submodules:
86
+ module = importlib.import_module(f".{name}", __name__)
87
+ globals()[name] = module
88
+ else:
89
+ raise AttributeError(f"module {__name__} has no attribute {name}")
90
+ return globals()[name]
91
+
92
+
93
+ # For Pylance
94
+ if __name__ == '__main__':
95
+ from .basic import *
96
+ from .norm import *
97
+ from .nonlinearity import *
98
+ from .linear import *
99
+ from .attention import *
100
+ from .conv import *
101
+ from .spatial import *
102
+ import transformer
trellis/modules/sparse/attention/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from .full_attn import *
2
+ from .serialized_attn import *
3
+ from .windowed_attn import *
4
+ from .modules import *
trellis/modules/sparse/attention/full_attn.py ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+ import torch
3
+ from .. import SparseTensor
4
+ from .. import DEBUG, ATTN
5
+
6
+ if ATTN == 'xformers':
7
+ import xformers.ops as xops
8
+ elif ATTN == 'flash_attn':
9
+ import flash_attn
10
+ else:
11
+ raise ValueError(f"Unknown attention module: {ATTN}")
12
+
13
+
14
+ __all__ = [
15
+ 'sparse_scaled_dot_product_attention',
16
+ ]
17
+
18
+
19
+ @overload
20
+ def sparse_scaled_dot_product_attention(qkv: SparseTensor) -> SparseTensor:
21
+ """
22
+ Apply scaled dot product attention to a sparse tensor.
23
+
24
+ Args:
25
+ qkv (SparseTensor): A [N, *, 3, H, C] sparse tensor containing Qs, Ks, and Vs.
26
+ """
27
+ ...
28
+
29
+ @overload
30
+ def sparse_scaled_dot_product_attention(q: SparseTensor, kv: Union[SparseTensor, torch.Tensor]) -> SparseTensor:
31
+ """
32
+ Apply scaled dot product attention to a sparse tensor.
33
+
34
+ Args:
35
+ q (SparseTensor): A [N, *, H, C] sparse tensor containing Qs.
36
+ kv (SparseTensor or torch.Tensor): A [N, *, 2, H, C] sparse tensor or a [N, L, 2, H, C] dense tensor containing Ks and Vs.
37
+ """
38
+ ...
39
+
40
+ @overload
41
+ def sparse_scaled_dot_product_attention(q: torch.Tensor, kv: SparseTensor) -> torch.Tensor:
42
+ """
43
+ Apply scaled dot product attention to a sparse tensor.
44
+
45
+ Args:
46
+ q (SparseTensor): A [N, L, H, C] dense tensor containing Qs.
47
+ kv (SparseTensor or torch.Tensor): A [N, *, 2, H, C] sparse tensor containing Ks and Vs.
48
+ """
49
+ ...
50
+
51
+ @overload
52
+ def sparse_scaled_dot_product_attention(q: SparseTensor, k: SparseTensor, v: SparseTensor) -> SparseTensor:
53
+ """
54
+ Apply scaled dot product attention to a sparse tensor.
55
+
56
+ Args:
57
+ q (SparseTensor): A [N, *, H, Ci] sparse tensor containing Qs.
58
+ k (SparseTensor): A [N, *, H, Ci] sparse tensor containing Ks.
59
+ v (SparseTensor): A [N, *, H, Co] sparse tensor containing Vs.
60
+
61
+ Note:
62
+ k and v are assumed to have the same coordinate map.
63
+ """
64
+ ...
65
+
66
+ @overload
67
+ def sparse_scaled_dot_product_attention(q: SparseTensor, k: torch.Tensor, v: torch.Tensor) -> SparseTensor:
68
+ """
69
+ Apply scaled dot product attention to a sparse tensor.
70
+
71
+ Args:
72
+ q (SparseTensor): A [N, *, H, Ci] sparse tensor containing Qs.
73
+ k (torch.Tensor): A [N, L, H, Ci] dense tensor containing Ks.
74
+ v (torch.Tensor): A [N, L, H, Co] dense tensor containing Vs.
75
+ """
76
+ ...
77
+
78
+ @overload
79
+ def sparse_scaled_dot_product_attention(q: torch.Tensor, k: SparseTensor, v: SparseTensor) -> torch.Tensor:
80
+ """
81
+ Apply scaled dot product attention to a sparse tensor.
82
+
83
+ Args:
84
+ q (torch.Tensor): A [N, L, H, Ci] dense tensor containing Qs.
85
+ k (SparseTensor): A [N, *, H, Ci] sparse tensor containing Ks.
86
+ v (SparseTensor): A [N, *, H, Co] sparse tensor containing Vs.
87
+ """
88
+ ...
89
+
90
+ def sparse_scaled_dot_product_attention(*args, **kwargs):
91
+ arg_names_dict = {
92
+ 1: ['qkv'],
93
+ 2: ['q', 'kv'],
94
+ 3: ['q', 'k', 'v']
95
+ }
96
+ num_all_args = len(args) + len(kwargs)
97
+ assert num_all_args in arg_names_dict, f"Invalid number of arguments, got {num_all_args}, expected 1, 2, or 3"
98
+ for key in arg_names_dict[num_all_args][len(args):]:
99
+ assert key in kwargs, f"Missing argument {key}"
100
+
101
+ if num_all_args == 1:
102
+ qkv = args[0] if len(args) > 0 else kwargs['qkv']
103
+ assert isinstance(qkv, SparseTensor), f"qkv must be a SparseTensor, got {type(qkv)}"
104
+ assert len(qkv.shape) == 4 and qkv.shape[1] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, *, 3, H, C]"
105
+ device = qkv.device
106
+
107
+ s = qkv
108
+ q_seqlen = [qkv.layout[i].stop - qkv.layout[i].start for i in range(qkv.shape[0])]
109
+ kv_seqlen = q_seqlen
110
+ qkv = qkv.feats # [T, 3, H, C]
111
+
112
+ elif num_all_args == 2:
113
+ q = args[0] if len(args) > 0 else kwargs['q']
114
+ kv = args[1] if len(args) > 1 else kwargs['kv']
115
+ assert isinstance(q, SparseTensor) and isinstance(kv, (SparseTensor, torch.Tensor)) or \
116
+ isinstance(q, torch.Tensor) and isinstance(kv, SparseTensor), \
117
+ f"Invalid types, got {type(q)} and {type(kv)}"
118
+ assert q.shape[0] == kv.shape[0], f"Batch size mismatch, got {q.shape[0]} and {kv.shape[0]}"
119
+ device = q.device
120
+
121
+ if isinstance(q, SparseTensor):
122
+ assert len(q.shape) == 3, f"Invalid shape for q, got {q.shape}, expected [N, *, H, C]"
123
+ s = q
124
+ q_seqlen = [q.layout[i].stop - q.layout[i].start for i in range(q.shape[0])]
125
+ q = q.feats # [T_Q, H, C]
126
+ else:
127
+ assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, C]"
128
+ s = None
129
+ N, L, H, C = q.shape
130
+ q_seqlen = [L] * N
131
+ q = q.reshape(N * L, H, C) # [T_Q, H, C]
132
+
133
+ if isinstance(kv, SparseTensor):
134
+ assert len(kv.shape) == 4 and kv.shape[1] == 2, f"Invalid shape for kv, got {kv.shape}, expected [N, *, 2, H, C]"
135
+ kv_seqlen = [kv.layout[i].stop - kv.layout[i].start for i in range(kv.shape[0])]
136
+ kv = kv.feats # [T_KV, 2, H, C]
137
+ else:
138
+ assert len(kv.shape) == 5, f"Invalid shape for kv, got {kv.shape}, expected [N, L, 2, H, C]"
139
+ N, L, _, H, C = kv.shape
140
+ kv_seqlen = [L] * N
141
+ kv = kv.reshape(N * L, 2, H, C) # [T_KV, 2, H, C]
142
+
143
+ elif num_all_args == 3:
144
+ q = args[0] if len(args) > 0 else kwargs['q']
145
+ k = args[1] if len(args) > 1 else kwargs['k']
146
+ v = args[2] if len(args) > 2 else kwargs['v']
147
+ assert isinstance(q, SparseTensor) and isinstance(k, (SparseTensor, torch.Tensor)) and type(k) == type(v) or \
148
+ isinstance(q, torch.Tensor) and isinstance(k, SparseTensor) and isinstance(v, SparseTensor), \
149
+ f"Invalid types, got {type(q)}, {type(k)}, and {type(v)}"
150
+ assert q.shape[0] == k.shape[0] == v.shape[0], f"Batch size mismatch, got {q.shape[0]}, {k.shape[0]}, and {v.shape[0]}"
151
+ device = q.device
152
+
153
+ if isinstance(q, SparseTensor):
154
+ assert len(q.shape) == 3, f"Invalid shape for q, got {q.shape}, expected [N, *, H, Ci]"
155
+ s = q
156
+ q_seqlen = [q.layout[i].stop - q.layout[i].start for i in range(q.shape[0])]
157
+ q = q.feats # [T_Q, H, Ci]
158
+ else:
159
+ assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, Ci]"
160
+ s = None
161
+ N, L, H, CI = q.shape
162
+ q_seqlen = [L] * N
163
+ q = q.reshape(N * L, H, CI) # [T_Q, H, Ci]
164
+
165
+ if isinstance(k, SparseTensor):
166
+ assert len(k.shape) == 3, f"Invalid shape for k, got {k.shape}, expected [N, *, H, Ci]"
167
+ assert len(v.shape) == 3, f"Invalid shape for v, got {v.shape}, expected [N, *, H, Co]"
168
+ kv_seqlen = [k.layout[i].stop - k.layout[i].start for i in range(k.shape[0])]
169
+ k = k.feats # [T_KV, H, Ci]
170
+ v = v.feats # [T_KV, H, Co]
171
+ else:
172
+ assert len(k.shape) == 4, f"Invalid shape for k, got {k.shape}, expected [N, L, H, Ci]"
173
+ assert len(v.shape) == 4, f"Invalid shape for v, got {v.shape}, expected [N, L, H, Co]"
174
+ N, L, H, CI, CO = *k.shape, v.shape[-1]
175
+ kv_seqlen = [L] * N
176
+ k = k.reshape(N * L, H, CI) # [T_KV, H, Ci]
177
+ v = v.reshape(N * L, H, CO) # [T_KV, H, Co]
178
+
179
+ if DEBUG:
180
+ if s is not None:
181
+ for i in range(s.shape[0]):
182
+ assert (s.coords[s.layout[i]] == i).all(), f"SparseScaledDotProductSelfAttention: batch index mismatch"
183
+ if num_all_args in [2, 3]:
184
+ assert q.shape[:2] == [1, sum(q_seqlen)], f"SparseScaledDotProductSelfAttention: q shape mismatch"
185
+ if num_all_args == 3:
186
+ assert k.shape[:2] == [1, sum(kv_seqlen)], f"SparseScaledDotProductSelfAttention: k shape mismatch"
187
+ assert v.shape[:2] == [1, sum(kv_seqlen)], f"SparseScaledDotProductSelfAttention: v shape mismatch"
188
+
189
+ if ATTN == 'xformers':
190
+ if num_all_args == 1:
191
+ q, k, v = qkv.unbind(dim=1)
192
+ elif num_all_args == 2:
193
+ k, v = kv.unbind(dim=1)
194
+ q = q.unsqueeze(0)
195
+ k = k.unsqueeze(0)
196
+ v = v.unsqueeze(0)
197
+ mask = xops.fmha.BlockDiagonalMask.from_seqlens(q_seqlen, kv_seqlen)
198
+ out = xops.memory_efficient_attention(q, k, v, mask)[0]
199
+ elif ATTN == 'flash_attn':
200
+ cu_seqlens_q = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(q_seqlen), dim=0)]).int().to(device)
201
+ if num_all_args in [2, 3]:
202
+ cu_seqlens_kv = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(kv_seqlen), dim=0)]).int().to(device)
203
+ if num_all_args == 1:
204
+ out = flash_attn.flash_attn_varlen_qkvpacked_func(qkv, cu_seqlens_q, max(q_seqlen))
205
+ elif num_all_args == 2:
206
+ out = flash_attn.flash_attn_varlen_kvpacked_func(q, kv, cu_seqlens_q, cu_seqlens_kv, max(q_seqlen), max(kv_seqlen))
207
+ elif num_all_args == 3:
208
+ out = flash_attn.flash_attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max(q_seqlen), max(kv_seqlen))
209
+ else:
210
+ raise ValueError(f"Unknown attention module: {ATTN}")
211
+
212
+ if s is not None:
213
+ return s.replace(out)
214
+ else:
215
+ return out.reshape(N, L, H, -1)
trellis/modules/sparse/attention/modules.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ from .. import SparseTensor
6
+ from .full_attn import sparse_scaled_dot_product_attention
7
+ from .serialized_attn import SerializeMode, sparse_serialized_scaled_dot_product_self_attention
8
+ from .windowed_attn import sparse_windowed_scaled_dot_product_self_attention
9
+ from ...attention import RotaryPositionEmbedder
10
+
11
+
12
+ class SparseMultiHeadRMSNorm(nn.Module):
13
+ def __init__(self, dim: int, heads: int):
14
+ super().__init__()
15
+ self.scale = dim ** 0.5
16
+ self.gamma = nn.Parameter(torch.ones(heads, dim))
17
+
18
+ def forward(self, x: Union[SparseTensor, torch.Tensor]) -> Union[SparseTensor, torch.Tensor]:
19
+ x_type = x.dtype
20
+ x = x.float()
21
+ if isinstance(x, SparseTensor):
22
+ x = x.replace(F.normalize(x.feats, dim=-1))
23
+ else:
24
+ x = F.normalize(x, dim=-1)
25
+ return (x * self.gamma * self.scale).to(x_type)
26
+
27
+
28
+ class SparseMultiHeadAttention(nn.Module):
29
+ def __init__(
30
+ self,
31
+ channels: int,
32
+ num_heads: int,
33
+ ctx_channels: Optional[int] = None,
34
+ type: Literal["self", "cross"] = "self",
35
+ attn_mode: Literal["full", "serialized", "windowed"] = "full",
36
+ window_size: Optional[int] = None,
37
+ shift_sequence: Optional[int] = None,
38
+ shift_window: Optional[Tuple[int, int, int]] = None,
39
+ serialize_mode: Optional[SerializeMode] = None,
40
+ qkv_bias: bool = True,
41
+ use_rope: bool = False,
42
+ qk_rms_norm: bool = False,
43
+ ):
44
+ super().__init__()
45
+ assert channels % num_heads == 0
46
+ assert type in ["self", "cross"], f"Invalid attention type: {type}"
47
+ assert attn_mode in ["full", "serialized", "windowed"], f"Invalid attention mode: {attn_mode}"
48
+ assert type == "self" or attn_mode == "full", "Cross-attention only supports full attention"
49
+ assert type == "self" or use_rope is False, "Rotary position embeddings only supported for self-attention"
50
+ self.channels = channels
51
+ self.ctx_channels = ctx_channels if ctx_channels is not None else channels
52
+ self.num_heads = num_heads
53
+ self._type = type
54
+ self.attn_mode = attn_mode
55
+ self.window_size = window_size
56
+ self.shift_sequence = shift_sequence
57
+ self.shift_window = shift_window
58
+ self.serialize_mode = serialize_mode
59
+ self.use_rope = use_rope
60
+ self.qk_rms_norm = qk_rms_norm
61
+
62
+ if self._type == "self":
63
+ self.to_qkv = nn.Linear(channels, channels * 3, bias=qkv_bias)
64
+ else:
65
+ self.to_q = nn.Linear(channels, channels, bias=qkv_bias)
66
+ self.to_kv = nn.Linear(self.ctx_channels, channels * 2, bias=qkv_bias)
67
+
68
+ if self.qk_rms_norm:
69
+ self.q_rms_norm = SparseMultiHeadRMSNorm(channels // num_heads, num_heads)
70
+ self.k_rms_norm = SparseMultiHeadRMSNorm(channels // num_heads, num_heads)
71
+
72
+ self.to_out = nn.Linear(channels, channels)
73
+
74
+ if use_rope:
75
+ self.rope = RotaryPositionEmbedder(channels)
76
+
77
+ @staticmethod
78
+ def _linear(module: nn.Linear, x: Union[SparseTensor, torch.Tensor]) -> Union[SparseTensor, torch.Tensor]:
79
+ if isinstance(x, SparseTensor):
80
+ return x.replace(module(x.feats))
81
+ else:
82
+ return module(x)
83
+
84
+ @staticmethod
85
+ def _reshape_chs(x: Union[SparseTensor, torch.Tensor], shape: Tuple[int, ...]) -> Union[SparseTensor, torch.Tensor]:
86
+ if isinstance(x, SparseTensor):
87
+ return x.reshape(*shape)
88
+ else:
89
+ return x.reshape(*x.shape[:2], *shape)
90
+
91
+ def _fused_pre(self, x: Union[SparseTensor, torch.Tensor], num_fused: int) -> Union[SparseTensor, torch.Tensor]:
92
+ if isinstance(x, SparseTensor):
93
+ x_feats = x.feats.unsqueeze(0)
94
+ else:
95
+ x_feats = x
96
+ x_feats = x_feats.reshape(*x_feats.shape[:2], num_fused, self.num_heads, -1)
97
+ return x.replace(x_feats.squeeze(0)) if isinstance(x, SparseTensor) else x_feats
98
+
99
+ def _rope(self, qkv: SparseTensor) -> SparseTensor:
100
+ q, k, v = qkv.feats.unbind(dim=1) # [T, H, C]
101
+ q, k = self.rope(q, k, qkv.coords[:, 1:])
102
+ qkv = qkv.replace(torch.stack([q, k, v], dim=1))
103
+ return qkv
104
+
105
+ def forward(self, x: Union[SparseTensor, torch.Tensor], context: Optional[Union[SparseTensor, torch.Tensor]] = None) -> Union[SparseTensor, torch.Tensor]:
106
+ if self._type == "self":
107
+ qkv = self._linear(self.to_qkv, x)
108
+ qkv = self._fused_pre(qkv, num_fused=3)
109
+ if self.use_rope:
110
+ qkv = self._rope(qkv)
111
+ if self.qk_rms_norm:
112
+ q, k, v = qkv.unbind(dim=1)
113
+ q = self.q_rms_norm(q)
114
+ k = self.k_rms_norm(k)
115
+ qkv = qkv.replace(torch.stack([q.feats, k.feats, v.feats], dim=1))
116
+ if self.attn_mode == "full":
117
+ h = sparse_scaled_dot_product_attention(qkv)
118
+ elif self.attn_mode == "serialized":
119
+ h = sparse_serialized_scaled_dot_product_self_attention(
120
+ qkv, self.window_size, serialize_mode=self.serialize_mode, shift_sequence=self.shift_sequence, shift_window=self.shift_window
121
+ )
122
+ elif self.attn_mode == "windowed":
123
+ h = sparse_windowed_scaled_dot_product_self_attention(
124
+ qkv, self.window_size, shift_window=self.shift_window
125
+ )
126
+ else:
127
+ q = self._linear(self.to_q, x)
128
+ q = self._reshape_chs(q, (self.num_heads, -1))
129
+ kv = self._linear(self.to_kv, context)
130
+ kv = self._fused_pre(kv, num_fused=2)
131
+ if self.qk_rms_norm:
132
+ q = self.q_rms_norm(q)
133
+ k, v = kv.unbind(dim=1)
134
+ k = self.k_rms_norm(k)
135
+ kv = kv.replace(torch.stack([k.feats, v.feats], dim=1))
136
+ h = sparse_scaled_dot_product_attention(q, kv)
137
+ h = self._reshape_chs(h, (-1,))
138
+ h = self._linear(self.to_out, h)
139
+ return h
trellis/modules/sparse/attention/serialized_attn.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+ from enum import Enum
3
+ import torch
4
+ import math
5
+ from .. import SparseTensor
6
+ from .. import DEBUG, ATTN
7
+
8
+ if ATTN == 'xformers':
9
+ import xformers.ops as xops
10
+ elif ATTN == 'flash_attn':
11
+ import flash_attn
12
+ else:
13
+ raise ValueError(f"Unknown attention module: {ATTN}")
14
+
15
+
16
+ __all__ = [
17
+ 'sparse_serialized_scaled_dot_product_self_attention',
18
+ ]
19
+
20
+
21
+ class SerializeMode(Enum):
22
+ Z_ORDER = 0
23
+ Z_ORDER_TRANSPOSED = 1
24
+ HILBERT = 2
25
+ HILBERT_TRANSPOSED = 3
26
+
27
+
28
+ SerializeModes = [
29
+ SerializeMode.Z_ORDER,
30
+ SerializeMode.Z_ORDER_TRANSPOSED,
31
+ SerializeMode.HILBERT,
32
+ SerializeMode.HILBERT_TRANSPOSED
33
+ ]
34
+
35
+
36
+ def calc_serialization(
37
+ tensor: SparseTensor,
38
+ window_size: int,
39
+ serialize_mode: SerializeMode = SerializeMode.Z_ORDER,
40
+ shift_sequence: int = 0,
41
+ shift_window: Tuple[int, int, int] = (0, 0, 0)
42
+ ) -> Tuple[torch.Tensor, torch.Tensor, List[int]]:
43
+ """
44
+ Calculate serialization and partitioning for a set of coordinates.
45
+
46
+ Args:
47
+ tensor (SparseTensor): The input tensor.
48
+ window_size (int): The window size to use.
49
+ serialize_mode (SerializeMode): The serialization mode to use.
50
+ shift_sequence (int): The shift of serialized sequence.
51
+ shift_window (Tuple[int, int, int]): The shift of serialized coordinates.
52
+
53
+ Returns:
54
+ (torch.Tensor, torch.Tensor): Forwards and backwards indices.
55
+ """
56
+ fwd_indices = []
57
+ bwd_indices = []
58
+ seq_lens = []
59
+ seq_batch_indices = []
60
+ offsets = [0]
61
+
62
+ if 'vox2seq' not in globals():
63
+ import vox2seq
64
+
65
+ # Serialize the input
66
+ serialize_coords = tensor.coords[:, 1:].clone()
67
+ serialize_coords += torch.tensor(shift_window, dtype=torch.int32, device=tensor.device).reshape(1, 3)
68
+ if serialize_mode == SerializeMode.Z_ORDER:
69
+ code = vox2seq.encode(serialize_coords, mode='z_order', permute=[0, 1, 2])
70
+ elif serialize_mode == SerializeMode.Z_ORDER_TRANSPOSED:
71
+ code = vox2seq.encode(serialize_coords, mode='z_order', permute=[1, 0, 2])
72
+ elif serialize_mode == SerializeMode.HILBERT:
73
+ code = vox2seq.encode(serialize_coords, mode='hilbert', permute=[0, 1, 2])
74
+ elif serialize_mode == SerializeMode.HILBERT_TRANSPOSED:
75
+ code = vox2seq.encode(serialize_coords, mode='hilbert', permute=[1, 0, 2])
76
+ else:
77
+ raise ValueError(f"Unknown serialize mode: {serialize_mode}")
78
+
79
+ for bi, s in enumerate(tensor.layout):
80
+ num_points = s.stop - s.start
81
+ num_windows = (num_points + window_size - 1) // window_size
82
+ valid_window_size = num_points / num_windows
83
+ to_ordered = torch.argsort(code[s.start:s.stop])
84
+ if num_windows == 1:
85
+ fwd_indices.append(to_ordered)
86
+ bwd_indices.append(torch.zeros_like(to_ordered).scatter_(0, to_ordered, torch.arange(num_points, device=tensor.device)))
87
+ fwd_indices[-1] += s.start
88
+ bwd_indices[-1] += offsets[-1]
89
+ seq_lens.append(num_points)
90
+ seq_batch_indices.append(bi)
91
+ offsets.append(offsets[-1] + seq_lens[-1])
92
+ else:
93
+ # Partition the input
94
+ offset = 0
95
+ mids = [(i + 0.5) * valid_window_size + shift_sequence for i in range(num_windows)]
96
+ split = [math.floor(i * valid_window_size + shift_sequence) for i in range(num_windows + 1)]
97
+ bwd_index = torch.zeros((num_points,), dtype=torch.int64, device=tensor.device)
98
+ for i in range(num_windows):
99
+ mid = mids[i]
100
+ valid_start = split[i]
101
+ valid_end = split[i + 1]
102
+ padded_start = math.floor(mid - 0.5 * window_size)
103
+ padded_end = padded_start + window_size
104
+ fwd_indices.append(to_ordered[torch.arange(padded_start, padded_end, device=tensor.device) % num_points])
105
+ offset += valid_start - padded_start
106
+ bwd_index.scatter_(0, fwd_indices[-1][valid_start-padded_start:valid_end-padded_start], torch.arange(offset, offset + valid_end - valid_start, device=tensor.device))
107
+ offset += padded_end - valid_start
108
+ fwd_indices[-1] += s.start
109
+ seq_lens.extend([window_size] * num_windows)
110
+ seq_batch_indices.extend([bi] * num_windows)
111
+ bwd_indices.append(bwd_index + offsets[-1])
112
+ offsets.append(offsets[-1] + num_windows * window_size)
113
+
114
+ fwd_indices = torch.cat(fwd_indices)
115
+ bwd_indices = torch.cat(bwd_indices)
116
+
117
+ return fwd_indices, bwd_indices, seq_lens, seq_batch_indices
118
+
119
+
120
+ def sparse_serialized_scaled_dot_product_self_attention(
121
+ qkv: SparseTensor,
122
+ window_size: int,
123
+ serialize_mode: SerializeMode = SerializeMode.Z_ORDER,
124
+ shift_sequence: int = 0,
125
+ shift_window: Tuple[int, int, int] = (0, 0, 0)
126
+ ) -> SparseTensor:
127
+ """
128
+ Apply serialized scaled dot product self attention to a sparse tensor.
129
+
130
+ Args:
131
+ qkv (SparseTensor): [N, *, 3, H, C] sparse tensor containing Qs, Ks, and Vs.
132
+ window_size (int): The window size to use.
133
+ serialize_mode (SerializeMode): The serialization mode to use.
134
+ shift_sequence (int): The shift of serialized sequence.
135
+ shift_window (Tuple[int, int, int]): The shift of serialized coordinates.
136
+ shift (int): The shift to use.
137
+ """
138
+ assert len(qkv.shape) == 4 and qkv.shape[1] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, *, 3, H, C]"
139
+
140
+ serialization_spatial_cache_name = f'serialization_{serialize_mode}_{window_size}_{shift_sequence}_{shift_window}'
141
+ serialization_spatial_cache = qkv.get_spatial_cache(serialization_spatial_cache_name)
142
+ if serialization_spatial_cache is None:
143
+ fwd_indices, bwd_indices, seq_lens, seq_batch_indices = calc_serialization(qkv, window_size, serialize_mode, shift_sequence, shift_window)
144
+ qkv.register_spatial_cache(serialization_spatial_cache_name, (fwd_indices, bwd_indices, seq_lens, seq_batch_indices))
145
+ else:
146
+ fwd_indices, bwd_indices, seq_lens, seq_batch_indices = serialization_spatial_cache
147
+
148
+ M = fwd_indices.shape[0]
149
+ T = qkv.feats.shape[0]
150
+ H = qkv.feats.shape[2]
151
+ C = qkv.feats.shape[3]
152
+
153
+ qkv_feats = qkv.feats[fwd_indices] # [M, 3, H, C]
154
+
155
+ if DEBUG:
156
+ start = 0
157
+ qkv_coords = qkv.coords[fwd_indices]
158
+ for i in range(len(seq_lens)):
159
+ assert (qkv_coords[start:start+seq_lens[i], 0] == seq_batch_indices[i]).all(), f"SparseWindowedScaledDotProductSelfAttention: batch index mismatch"
160
+ start += seq_lens[i]
161
+
162
+ if all([seq_len == window_size for seq_len in seq_lens]):
163
+ B = len(seq_lens)
164
+ N = window_size
165
+ qkv_feats = qkv_feats.reshape(B, N, 3, H, C)
166
+ if ATTN == 'xformers':
167
+ q, k, v = qkv_feats.unbind(dim=2) # [B, N, H, C]
168
+ out = xops.memory_efficient_attention(q, k, v) # [B, N, H, C]
169
+ elif ATTN == 'flash_attn':
170
+ out = flash_attn.flash_attn_qkvpacked_func(qkv_feats) # [B, N, H, C]
171
+ else:
172
+ raise ValueError(f"Unknown attention module: {ATTN}")
173
+ out = out.reshape(B * N, H, C) # [M, H, C]
174
+ else:
175
+ if ATTN == 'xformers':
176
+ q, k, v = qkv_feats.unbind(dim=1) # [M, H, C]
177
+ q = q.unsqueeze(0) # [1, M, H, C]
178
+ k = k.unsqueeze(0) # [1, M, H, C]
179
+ v = v.unsqueeze(0) # [1, M, H, C]
180
+ mask = xops.fmha.BlockDiagonalMask.from_seqlens(seq_lens)
181
+ out = xops.memory_efficient_attention(q, k, v, mask)[0] # [M, H, C]
182
+ elif ATTN == 'flash_attn':
183
+ cu_seqlens = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(seq_lens), dim=0)], dim=0) \
184
+ .to(qkv.device).int()
185
+ out = flash_attn.flash_attn_varlen_qkvpacked_func(qkv_feats, cu_seqlens, max(seq_lens)) # [M, H, C]
186
+
187
+ out = out[bwd_indices] # [T, H, C]
188
+
189
+ if DEBUG:
190
+ qkv_coords = qkv_coords[bwd_indices]
191
+ assert torch.equal(qkv_coords, qkv.coords), "SparseWindowedScaledDotProductSelfAttention: coordinate mismatch"
192
+
193
+ return qkv.replace(out)
trellis/modules/sparse/attention/windowed_attn.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+ import torch
3
+ import math
4
+ from .. import SparseTensor
5
+ from .. import DEBUG, ATTN
6
+
7
+ if ATTN == 'xformers':
8
+ import xformers.ops as xops
9
+ elif ATTN == 'flash_attn':
10
+ import flash_attn
11
+ else:
12
+ raise ValueError(f"Unknown attention module: {ATTN}")
13
+
14
+
15
+ __all__ = [
16
+ 'sparse_windowed_scaled_dot_product_self_attention',
17
+ ]
18
+
19
+
20
+ def calc_window_partition(
21
+ tensor: SparseTensor,
22
+ window_size: Union[int, Tuple[int, ...]],
23
+ shift_window: Union[int, Tuple[int, ...]] = 0
24
+ ) -> Tuple[torch.Tensor, torch.Tensor, List[int], List[int]]:
25
+ """
26
+ Calculate serialization and partitioning for a set of coordinates.
27
+
28
+ Args:
29
+ tensor (SparseTensor): The input tensor.
30
+ window_size (int): The window size to use.
31
+ shift_window (Tuple[int, ...]): The shift of serialized coordinates.
32
+
33
+ Returns:
34
+ (torch.Tensor): Forwards indices.
35
+ (torch.Tensor): Backwards indices.
36
+ (List[int]): Sequence lengths.
37
+ (List[int]): Sequence batch indices.
38
+ """
39
+ DIM = tensor.coords.shape[1] - 1
40
+ shift_window = (shift_window,) * DIM if isinstance(shift_window, int) else shift_window
41
+ window_size = (window_size,) * DIM if isinstance(window_size, int) else window_size
42
+ shifted_coords = tensor.coords.clone().detach()
43
+ shifted_coords[:, 1:] += torch.tensor(shift_window, device=tensor.device, dtype=torch.int32).unsqueeze(0)
44
+
45
+ MAX_COORDS = shifted_coords[:, 1:].max(dim=0).values.tolist()
46
+ NUM_WINDOWS = [math.ceil((mc + 1) / ws) for mc, ws in zip(MAX_COORDS, window_size)]
47
+ OFFSET = torch.cumprod(torch.tensor([1] + NUM_WINDOWS[::-1]), dim=0).tolist()[::-1]
48
+
49
+ shifted_coords[:, 1:] //= torch.tensor(window_size, device=tensor.device, dtype=torch.int32).unsqueeze(0)
50
+ shifted_indices = (shifted_coords * torch.tensor(OFFSET, device=tensor.device, dtype=torch.int32).unsqueeze(0)).sum(dim=1)
51
+ fwd_indices = torch.argsort(shifted_indices)
52
+ bwd_indices = torch.empty_like(fwd_indices)
53
+ bwd_indices[fwd_indices] = torch.arange(fwd_indices.shape[0], device=tensor.device)
54
+ seq_lens = torch.bincount(shifted_indices)
55
+ seq_batch_indices = torch.arange(seq_lens.shape[0], device=tensor.device, dtype=torch.int32) // OFFSET[0]
56
+ mask = seq_lens != 0
57
+ seq_lens = seq_lens[mask].tolist()
58
+ seq_batch_indices = seq_batch_indices[mask].tolist()
59
+
60
+ return fwd_indices, bwd_indices, seq_lens, seq_batch_indices
61
+
62
+
63
+ def sparse_windowed_scaled_dot_product_self_attention(
64
+ qkv: SparseTensor,
65
+ window_size: int,
66
+ shift_window: Tuple[int, int, int] = (0, 0, 0)
67
+ ) -> SparseTensor:
68
+ """
69
+ Apply windowed scaled dot product self attention to a sparse tensor.
70
+
71
+ Args:
72
+ qkv (SparseTensor): [N, *, 3, H, C] sparse tensor containing Qs, Ks, and Vs.
73
+ window_size (int): The window size to use.
74
+ shift_window (Tuple[int, int, int]): The shift of serialized coordinates.
75
+ shift (int): The shift to use.
76
+ """
77
+ assert len(qkv.shape) == 4 and qkv.shape[1] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, *, 3, H, C]"
78
+
79
+ serialization_spatial_cache_name = f'window_partition_{window_size}_{shift_window}'
80
+ serialization_spatial_cache = qkv.get_spatial_cache(serialization_spatial_cache_name)
81
+ if serialization_spatial_cache is None:
82
+ fwd_indices, bwd_indices, seq_lens, seq_batch_indices = calc_window_partition(qkv, window_size, shift_window)
83
+ qkv.register_spatial_cache(serialization_spatial_cache_name, (fwd_indices, bwd_indices, seq_lens, seq_batch_indices))
84
+ else:
85
+ fwd_indices, bwd_indices, seq_lens, seq_batch_indices = serialization_spatial_cache
86
+
87
+ M = fwd_indices.shape[0]
88
+ T = qkv.feats.shape[0]
89
+ H = qkv.feats.shape[2]
90
+ C = qkv.feats.shape[3]
91
+
92
+ qkv_feats = qkv.feats[fwd_indices] # [M, 3, H, C]
93
+
94
+ if DEBUG:
95
+ start = 0
96
+ qkv_coords = qkv.coords[fwd_indices]
97
+ for i in range(len(seq_lens)):
98
+ seq_coords = qkv_coords[start:start+seq_lens[i]]
99
+ assert (seq_coords[:, 0] == seq_batch_indices[i]).all(), f"SparseWindowedScaledDotProductSelfAttention: batch index mismatch"
100
+ assert (seq_coords[:, 1:].max(dim=0).values - seq_coords[:, 1:].min(dim=0).values < window_size).all(), \
101
+ f"SparseWindowedScaledDotProductSelfAttention: window size exceeded"
102
+ start += seq_lens[i]
103
+
104
+ if all([seq_len == window_size for seq_len in seq_lens]):
105
+ B = len(seq_lens)
106
+ N = window_size
107
+ qkv_feats = qkv_feats.reshape(B, N, 3, H, C)
108
+ if ATTN == 'xformers':
109
+ q, k, v = qkv_feats.unbind(dim=2) # [B, N, H, C]
110
+ out = xops.memory_efficient_attention(q, k, v) # [B, N, H, C]
111
+ elif ATTN == 'flash_attn':
112
+ out = flash_attn.flash_attn_qkvpacked_func(qkv_feats) # [B, N, H, C]
113
+ else:
114
+ raise ValueError(f"Unknown attention module: {ATTN}")
115
+ out = out.reshape(B * N, H, C) # [M, H, C]
116
+ else:
117
+ if ATTN == 'xformers':
118
+ q, k, v = qkv_feats.unbind(dim=1) # [M, H, C]
119
+ q = q.unsqueeze(0) # [1, M, H, C]
120
+ k = k.unsqueeze(0) # [1, M, H, C]
121
+ v = v.unsqueeze(0) # [1, M, H, C]
122
+ mask = xops.fmha.BlockDiagonalMask.from_seqlens(seq_lens)
123
+ out = xops.memory_efficient_attention(q, k, v, mask)[0] # [M, H, C]
124
+ elif ATTN == 'flash_attn':
125
+ cu_seqlens = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(seq_lens), dim=0)], dim=0) \
126
+ .to(qkv.device).int()
127
+ out = flash_attn.flash_attn_varlen_qkvpacked_func(qkv_feats, cu_seqlens, max(seq_lens)) # [M, H, C]
128
+
129
+ out = out[bwd_indices] # [T, H, C]
130
+
131
+ if DEBUG:
132
+ qkv_coords = qkv_coords[bwd_indices]
133
+ assert torch.equal(qkv_coords, qkv.coords), "SparseWindowedScaledDotProductSelfAttention: coordinate mismatch"
134
+
135
+ return qkv.replace(out)
trellis/modules/sparse/basic.py ADDED
@@ -0,0 +1,459 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+ import torch
3
+ import torch.nn as nn
4
+ from . import BACKEND, DEBUG
5
+ SparseTensorData = None # Lazy import
6
+
7
+
8
+ __all__ = [
9
+ 'SparseTensor',
10
+ 'sparse_batch_broadcast',
11
+ 'sparse_batch_op',
12
+ 'sparse_cat',
13
+ 'sparse_unbind',
14
+ ]
15
+
16
+
17
+ class SparseTensor:
18
+ """
19
+ Sparse tensor with support for both torchsparse and spconv backends.
20
+
21
+ Parameters:
22
+ - feats (torch.Tensor): Features of the sparse tensor.
23
+ - coords (torch.Tensor): Coordinates of the sparse tensor.
24
+ - shape (torch.Size): Shape of the sparse tensor.
25
+ - layout (List[slice]): Layout of the sparse tensor for each batch
26
+ - data (SparseTensorData): Sparse tensor data used for convolusion
27
+
28
+ NOTE:
29
+ - Data corresponding to a same batch should be contiguous.
30
+ - Coords should be in [0, 1023]
31
+ """
32
+ @overload
33
+ def __init__(self, feats: torch.Tensor, coords: torch.Tensor, shape: Optional[torch.Size] = None, layout: Optional[List[slice]] = None, **kwargs): ...
34
+
35
+ @overload
36
+ def __init__(self, data, shape: Optional[torch.Size] = None, layout: Optional[List[slice]] = None, **kwargs): ...
37
+
38
+ def __init__(self, *args, **kwargs):
39
+ # Lazy import of sparse tensor backend
40
+ global SparseTensorData
41
+ if SparseTensorData is None:
42
+ import importlib
43
+ if BACKEND == 'torchsparse':
44
+ SparseTensorData = importlib.import_module('torchsparse').SparseTensor
45
+ elif BACKEND == 'spconv':
46
+ SparseTensorData = importlib.import_module('spconv.pytorch').SparseConvTensor
47
+
48
+ method_id = 0
49
+ if len(args) != 0:
50
+ method_id = 0 if isinstance(args[0], torch.Tensor) else 1
51
+ else:
52
+ method_id = 1 if 'data' in kwargs else 0
53
+
54
+ if method_id == 0:
55
+ feats, coords, shape, layout = args + (None,) * (4 - len(args))
56
+ if 'feats' in kwargs:
57
+ feats = kwargs['feats']
58
+ del kwargs['feats']
59
+ if 'coords' in kwargs:
60
+ coords = kwargs['coords']
61
+ del kwargs['coords']
62
+ if 'shape' in kwargs:
63
+ shape = kwargs['shape']
64
+ del kwargs['shape']
65
+ if 'layout' in kwargs:
66
+ layout = kwargs['layout']
67
+ del kwargs['layout']
68
+
69
+ if shape is None:
70
+ shape = self.__cal_shape(feats, coords)
71
+ if layout is None:
72
+ layout = self.__cal_layout(coords, shape[0])
73
+ if BACKEND == 'torchsparse':
74
+ self.data = SparseTensorData(feats, coords, **kwargs)
75
+ elif BACKEND == 'spconv':
76
+ spatial_shape = list(coords.max(0)[0] + 1)[1:]
77
+ self.data = SparseTensorData(feats.reshape(feats.shape[0], -1), coords, spatial_shape, shape[0], **kwargs)
78
+ self.data._features = feats
79
+ elif method_id == 1:
80
+ data, shape, layout = args + (None,) * (3 - len(args))
81
+ if 'data' in kwargs:
82
+ data = kwargs['data']
83
+ del kwargs['data']
84
+ if 'shape' in kwargs:
85
+ shape = kwargs['shape']
86
+ del kwargs['shape']
87
+ if 'layout' in kwargs:
88
+ layout = kwargs['layout']
89
+ del kwargs['layout']
90
+
91
+ self.data = data
92
+ if shape is None:
93
+ shape = self.__cal_shape(self.feats, self.coords)
94
+ if layout is None:
95
+ layout = self.__cal_layout(self.coords, shape[0])
96
+
97
+ self._shape = shape
98
+ self._layout = layout
99
+ self._scale = kwargs.get('scale', (1, 1, 1))
100
+ self._spatial_cache = kwargs.get('spatial_cache', {})
101
+
102
+ if DEBUG:
103
+ try:
104
+ assert self.feats.shape[0] == self.coords.shape[0], f"Invalid feats shape: {self.feats.shape}, coords shape: {self.coords.shape}"
105
+ assert self.shape == self.__cal_shape(self.feats, self.coords), f"Invalid shape: {self.shape}"
106
+ assert self.layout == self.__cal_layout(self.coords, self.shape[0]), f"Invalid layout: {self.layout}"
107
+ for i in range(self.shape[0]):
108
+ assert torch.all(self.coords[self.layout[i], 0] == i), f"The data of batch {i} is not contiguous"
109
+ except Exception as e:
110
+ print('Debugging information:')
111
+ print(f"- Shape: {self.shape}")
112
+ print(f"- Layout: {self.layout}")
113
+ print(f"- Scale: {self._scale}")
114
+ print(f"- Coords: {self.coords}")
115
+ raise e
116
+
117
+ def __cal_shape(self, feats, coords):
118
+ shape = []
119
+ shape.append(coords[:, 0].max().item() + 1)
120
+ shape.extend([*feats.shape[1:]])
121
+ return torch.Size(shape)
122
+
123
+ def __cal_layout(self, coords, batch_size):
124
+ seq_len = torch.bincount(coords[:, 0], minlength=batch_size)
125
+ offset = torch.cumsum(seq_len, dim=0)
126
+ layout = [slice((offset[i] - seq_len[i]).item(), offset[i].item()) for i in range(batch_size)]
127
+ return layout
128
+
129
+ @property
130
+ def shape(self) -> torch.Size:
131
+ return self._shape
132
+
133
+ def dim(self) -> int:
134
+ return len(self.shape)
135
+
136
+ @property
137
+ def layout(self) -> List[slice]:
138
+ return self._layout
139
+
140
+ @property
141
+ def feats(self) -> torch.Tensor:
142
+ if BACKEND == 'torchsparse':
143
+ return self.data.F
144
+ elif BACKEND == 'spconv':
145
+ return self.data.features
146
+
147
+ @feats.setter
148
+ def feats(self, value: torch.Tensor):
149
+ if BACKEND == 'torchsparse':
150
+ self.data.F = value
151
+ elif BACKEND == 'spconv':
152
+ self.data.features = value
153
+
154
+ @property
155
+ def coords(self) -> torch.Tensor:
156
+ if BACKEND == 'torchsparse':
157
+ return self.data.C
158
+ elif BACKEND == 'spconv':
159
+ return self.data.indices
160
+
161
+ @coords.setter
162
+ def coords(self, value: torch.Tensor):
163
+ if BACKEND == 'torchsparse':
164
+ self.data.C = value
165
+ elif BACKEND == 'spconv':
166
+ self.data.indices = value
167
+
168
+ @property
169
+ def dtype(self):
170
+ return self.feats.dtype
171
+
172
+ @property
173
+ def device(self):
174
+ return self.feats.device
175
+
176
+ @overload
177
+ def to(self, dtype: torch.dtype) -> 'SparseTensor': ...
178
+
179
+ @overload
180
+ def to(self, device: Optional[Union[str, torch.device]] = None, dtype: Optional[torch.dtype] = None) -> 'SparseTensor': ...
181
+
182
+ def to(self, *args, **kwargs) -> 'SparseTensor':
183
+ device = None
184
+ dtype = None
185
+ if len(args) == 2:
186
+ device, dtype = args
187
+ elif len(args) == 1:
188
+ if isinstance(args[0], torch.dtype):
189
+ dtype = args[0]
190
+ else:
191
+ device = args[0]
192
+ if 'dtype' in kwargs:
193
+ assert dtype is None, "to() received multiple values for argument 'dtype'"
194
+ dtype = kwargs['dtype']
195
+ if 'device' in kwargs:
196
+ assert device is None, "to() received multiple values for argument 'device'"
197
+ device = kwargs['device']
198
+
199
+ new_feats = self.feats.to(device=device, dtype=dtype)
200
+ new_coords = self.coords.to(device=device)
201
+ return self.replace(new_feats, new_coords)
202
+
203
+ def type(self, dtype):
204
+ new_feats = self.feats.type(dtype)
205
+ return self.replace(new_feats)
206
+
207
+ def cpu(self) -> 'SparseTensor':
208
+ new_feats = self.feats.cpu()
209
+ new_coords = self.coords.cpu()
210
+ return self.replace(new_feats, new_coords)
211
+
212
+ def cuda(self) -> 'SparseTensor':
213
+ new_feats = self.feats.cuda()
214
+ new_coords = self.coords.cuda()
215
+ return self.replace(new_feats, new_coords)
216
+
217
+ def half(self) -> 'SparseTensor':
218
+ new_feats = self.feats.half()
219
+ return self.replace(new_feats)
220
+
221
+ def float(self) -> 'SparseTensor':
222
+ new_feats = self.feats.float()
223
+ return self.replace(new_feats)
224
+
225
+ def detach(self) -> 'SparseTensor':
226
+ new_coords = self.coords.detach()
227
+ new_feats = self.feats.detach()
228
+ return self.replace(new_feats, new_coords)
229
+
230
+ def dense(self) -> torch.Tensor:
231
+ if BACKEND == 'torchsparse':
232
+ return self.data.dense()
233
+ elif BACKEND == 'spconv':
234
+ return self.data.dense()
235
+
236
+ def reshape(self, *shape) -> 'SparseTensor':
237
+ new_feats = self.feats.reshape(self.feats.shape[0], *shape)
238
+ return self.replace(new_feats)
239
+
240
+ def unbind(self, dim: int) -> List['SparseTensor']:
241
+ return sparse_unbind(self, dim)
242
+
243
+ def replace(self, feats: torch.Tensor, coords: Optional[torch.Tensor] = None) -> 'SparseTensor':
244
+ new_shape = [self.shape[0]]
245
+ new_shape.extend(feats.shape[1:])
246
+ if BACKEND == 'torchsparse':
247
+ new_data = SparseTensorData(
248
+ feats=feats,
249
+ coords=self.data.coords if coords is None else coords,
250
+ stride=self.data.stride,
251
+ spatial_range=self.data.spatial_range,
252
+ )
253
+ new_data._caches = self.data._caches
254
+ elif BACKEND == 'spconv':
255
+ new_data = SparseTensorData(
256
+ self.data.features.reshape(self.data.features.shape[0], -1),
257
+ self.data.indices,
258
+ self.data.spatial_shape,
259
+ self.data.batch_size,
260
+ self.data.grid,
261
+ self.data.voxel_num,
262
+ self.data.indice_dict
263
+ )
264
+ new_data._features = feats
265
+ new_data.benchmark = self.data.benchmark
266
+ new_data.benchmark_record = self.data.benchmark_record
267
+ new_data.thrust_allocator = self.data.thrust_allocator
268
+ new_data._timer = self.data._timer
269
+ new_data.force_algo = self.data.force_algo
270
+ new_data.int8_scale = self.data.int8_scale
271
+ if coords is not None:
272
+ new_data.indices = coords
273
+ new_tensor = SparseTensor(new_data, shape=torch.Size(new_shape), layout=self.layout, scale=self._scale, spatial_cache=self._spatial_cache)
274
+ return new_tensor
275
+
276
+ @staticmethod
277
+ def full(aabb, dim, value, dtype=torch.float32, device=None) -> 'SparseTensor':
278
+ N, C = dim
279
+ x = torch.arange(aabb[0], aabb[3] + 1)
280
+ y = torch.arange(aabb[1], aabb[4] + 1)
281
+ z = torch.arange(aabb[2], aabb[5] + 1)
282
+ coords = torch.stack(torch.meshgrid(x, y, z, indexing='ij'), dim=-1).reshape(-1, 3)
283
+ coords = torch.cat([
284
+ torch.arange(N).view(-1, 1).repeat(1, coords.shape[0]).view(-1, 1),
285
+ coords.repeat(N, 1),
286
+ ], dim=1).to(dtype=torch.int32, device=device)
287
+ feats = torch.full((coords.shape[0], C), value, dtype=dtype, device=device)
288
+ return SparseTensor(feats=feats, coords=coords)
289
+
290
+ def __merge_sparse_cache(self, other: 'SparseTensor') -> dict:
291
+ new_cache = {}
292
+ for k in set(list(self._spatial_cache.keys()) + list(other._spatial_cache.keys())):
293
+ if k in self._spatial_cache:
294
+ new_cache[k] = self._spatial_cache[k]
295
+ if k in other._spatial_cache:
296
+ if k not in new_cache:
297
+ new_cache[k] = other._spatial_cache[k]
298
+ else:
299
+ new_cache[k].update(other._spatial_cache[k])
300
+ return new_cache
301
+
302
+ def __neg__(self) -> 'SparseTensor':
303
+ return self.replace(-self.feats)
304
+
305
+ def __elemwise__(self, other: Union[torch.Tensor, 'SparseTensor'], op: callable) -> 'SparseTensor':
306
+ if isinstance(other, torch.Tensor):
307
+ try:
308
+ other = torch.broadcast_to(other, self.shape)
309
+ other = sparse_batch_broadcast(self, other)
310
+ except:
311
+ pass
312
+ if isinstance(other, SparseTensor):
313
+ other = other.feats
314
+ new_feats = op(self.feats, other)
315
+ new_tensor = self.replace(new_feats)
316
+ if isinstance(other, SparseTensor):
317
+ new_tensor._spatial_cache = self.__merge_sparse_cache(other)
318
+ return new_tensor
319
+
320
+ def __add__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
321
+ return self.__elemwise__(other, torch.add)
322
+
323
+ def __radd__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
324
+ return self.__elemwise__(other, torch.add)
325
+
326
+ def __sub__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
327
+ return self.__elemwise__(other, torch.sub)
328
+
329
+ def __rsub__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
330
+ return self.__elemwise__(other, lambda x, y: torch.sub(y, x))
331
+
332
+ def __mul__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
333
+ return self.__elemwise__(other, torch.mul)
334
+
335
+ def __rmul__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
336
+ return self.__elemwise__(other, torch.mul)
337
+
338
+ def __truediv__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
339
+ return self.__elemwise__(other, torch.div)
340
+
341
+ def __rtruediv__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
342
+ return self.__elemwise__(other, lambda x, y: torch.div(y, x))
343
+
344
+ def __getitem__(self, idx):
345
+ if isinstance(idx, int):
346
+ idx = [idx]
347
+ elif isinstance(idx, slice):
348
+ idx = range(*idx.indices(self.shape[0]))
349
+ elif isinstance(idx, torch.Tensor):
350
+ if idx.dtype == torch.bool:
351
+ assert idx.shape == (self.shape[0],), f"Invalid index shape: {idx.shape}"
352
+ idx = idx.nonzero().squeeze(1)
353
+ elif idx.dtype in [torch.int32, torch.int64]:
354
+ assert len(idx.shape) == 1, f"Invalid index shape: {idx.shape}"
355
+ else:
356
+ raise ValueError(f"Unknown index type: {idx.dtype}")
357
+ else:
358
+ raise ValueError(f"Unknown index type: {type(idx)}")
359
+
360
+ coords = []
361
+ feats = []
362
+ for new_idx, old_idx in enumerate(idx):
363
+ coords.append(self.coords[self.layout[old_idx]].clone())
364
+ coords[-1][:, 0] = new_idx
365
+ feats.append(self.feats[self.layout[old_idx]])
366
+ coords = torch.cat(coords, dim=0).contiguous()
367
+ feats = torch.cat(feats, dim=0).contiguous()
368
+ return SparseTensor(feats=feats, coords=coords)
369
+
370
+ def register_spatial_cache(self, key, value) -> None:
371
+ """
372
+ Register a spatial cache.
373
+ The spatial cache can be any thing you want to cache.
374
+ The registery and retrieval of the cache is based on current scale.
375
+ """
376
+ scale_key = str(self._scale)
377
+ if scale_key not in self._spatial_cache:
378
+ self._spatial_cache[scale_key] = {}
379
+ self._spatial_cache[scale_key][key] = value
380
+
381
+ def get_spatial_cache(self, key=None):
382
+ """
383
+ Get a spatial cache.
384
+ """
385
+ scale_key = str(self._scale)
386
+ cur_scale_cache = self._spatial_cache.get(scale_key, {})
387
+ if key is None:
388
+ return cur_scale_cache
389
+ return cur_scale_cache.get(key, None)
390
+
391
+
392
+ def sparse_batch_broadcast(input: SparseTensor, other: torch.Tensor) -> torch.Tensor:
393
+ """
394
+ Broadcast a 1D tensor to a sparse tensor along the batch dimension then perform an operation.
395
+
396
+ Args:
397
+ input (torch.Tensor): 1D tensor to broadcast.
398
+ target (SparseTensor): Sparse tensor to broadcast to.
399
+ op (callable): Operation to perform after broadcasting. Defaults to torch.add.
400
+ """
401
+ coords, feats = input.coords, input.feats
402
+ broadcasted = torch.zeros_like(feats)
403
+ for k in range(input.shape[0]):
404
+ broadcasted[input.layout[k]] = other[k]
405
+ return broadcasted
406
+
407
+
408
+ def sparse_batch_op(input: SparseTensor, other: torch.Tensor, op: callable = torch.add) -> SparseTensor:
409
+ """
410
+ Broadcast a 1D tensor to a sparse tensor along the batch dimension then perform an operation.
411
+
412
+ Args:
413
+ input (torch.Tensor): 1D tensor to broadcast.
414
+ target (SparseTensor): Sparse tensor to broadcast to.
415
+ op (callable): Operation to perform after broadcasting. Defaults to torch.add.
416
+ """
417
+ return input.replace(op(input.feats, sparse_batch_broadcast(input, other)))
418
+
419
+
420
+ def sparse_cat(inputs: List[SparseTensor], dim: int = 0) -> SparseTensor:
421
+ """
422
+ Concatenate a list of sparse tensors.
423
+
424
+ Args:
425
+ inputs (List[SparseTensor]): List of sparse tensors to concatenate.
426
+ """
427
+ if dim == 0:
428
+ start = 0
429
+ coords = []
430
+ for input in inputs:
431
+ coords.append(input.coords.clone())
432
+ coords[-1][:, 0] += start
433
+ start += input.shape[0]
434
+ coords = torch.cat(coords, dim=0)
435
+ feats = torch.cat([input.feats for input in inputs], dim=0)
436
+ output = SparseTensor(
437
+ coords=coords,
438
+ feats=feats,
439
+ )
440
+ else:
441
+ feats = torch.cat([input.feats for input in inputs], dim=dim)
442
+ output = inputs[0].replace(feats)
443
+
444
+ return output
445
+
446
+
447
+ def sparse_unbind(input: SparseTensor, dim: int) -> List[SparseTensor]:
448
+ """
449
+ Unbind a sparse tensor along a dimension.
450
+
451
+ Args:
452
+ input (SparseTensor): Sparse tensor to unbind.
453
+ dim (int): Dimension to unbind.
454
+ """
455
+ if dim == 0:
456
+ return [input[i] for i in range(input.shape[0])]
457
+ else:
458
+ feats = input.feats.unbind(dim)
459
+ return [input.replace(f) for f in feats]
trellis/modules/sparse/conv/__init__.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .. import BACKEND
2
+
3
+
4
+ SPCONV_ALGO = 'auto' # 'auto', 'implicit_gemm', 'native'
5
+
6
+ def __from_env():
7
+ import os
8
+
9
+ global SPCONV_ALGO
10
+ env_spconv_algo = os.environ.get('SPCONV_ALGO')
11
+ if env_spconv_algo is not None and env_spconv_algo in ['auto', 'implicit_gemm', 'native']:
12
+ SPCONV_ALGO = env_spconv_algo
13
+ print(f"[SPARSE][CONV] spconv algo: {SPCONV_ALGO}")
14
+
15
+
16
+ __from_env()
17
+
18
+ if BACKEND == 'torchsparse':
19
+ from .conv_torchsparse import *
20
+ elif BACKEND == 'spconv':
21
+ from .conv_spconv import *
trellis/modules/sparse/conv/conv_spconv.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from .. import SparseTensor
4
+ from .. import DEBUG
5
+ from . import SPCONV_ALGO
6
+
7
+ class SparseConv3d(nn.Module):
8
+ def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, padding=None, bias=True, indice_key=None):
9
+ super(SparseConv3d, self).__init__()
10
+ if 'spconv' not in globals():
11
+ import spconv.pytorch as spconv
12
+ algo = None
13
+ if SPCONV_ALGO == 'native':
14
+ algo = spconv.ConvAlgo.Native
15
+ elif SPCONV_ALGO == 'implicit_gemm':
16
+ algo = spconv.ConvAlgo.MaskImplicitGemm
17
+ if stride == 1 and (padding is None):
18
+ self.conv = spconv.SubMConv3d(in_channels, out_channels, kernel_size, dilation=dilation, bias=bias, indice_key=indice_key, algo=algo)
19
+ else:
20
+ self.conv = spconv.SparseConv3d(in_channels, out_channels, kernel_size, stride=stride, dilation=dilation, padding=padding, bias=bias, indice_key=indice_key, algo=algo)
21
+ self.stride = tuple(stride) if isinstance(stride, (list, tuple)) else (stride, stride, stride)
22
+ self.padding = padding
23
+
24
+ def forward(self, x: SparseTensor) -> SparseTensor:
25
+ spatial_changed = any(s != 1 for s in self.stride) or (self.padding is not None)
26
+ new_data = self.conv(x.data)
27
+ new_shape = [x.shape[0], self.conv.out_channels]
28
+ new_layout = None if spatial_changed else x.layout
29
+
30
+ if spatial_changed and (x.shape[0] != 1):
31
+ # spconv was non-1 stride will break the contiguous of the output tensor, sort by the coords
32
+ fwd = new_data.indices[:, 0].argsort()
33
+ bwd = torch.zeros_like(fwd).scatter_(0, fwd, torch.arange(fwd.shape[0], device=fwd.device))
34
+ sorted_feats = new_data.features[fwd]
35
+ sorted_coords = new_data.indices[fwd]
36
+ unsorted_data = new_data
37
+ new_data = spconv.SparseConvTensor(sorted_feats, sorted_coords, unsorted_data.spatial_shape, unsorted_data.batch_size) # type: ignore
38
+
39
+ out = SparseTensor(
40
+ new_data, shape=torch.Size(new_shape), layout=new_layout,
41
+ scale=tuple([s * stride for s, stride in zip(x._scale, self.stride)]),
42
+ spatial_cache=x._spatial_cache,
43
+ )
44
+
45
+ if spatial_changed and (x.shape[0] != 1):
46
+ out.register_spatial_cache(f'conv_{self.stride}_unsorted_data', unsorted_data)
47
+ out.register_spatial_cache(f'conv_{self.stride}_sort_bwd', bwd)
48
+
49
+ return out
50
+
51
+
52
+ class SparseInverseConv3d(nn.Module):
53
+ def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, bias=True, indice_key=None):
54
+ super(SparseInverseConv3d, self).__init__()
55
+ if 'spconv' not in globals():
56
+ import spconv.pytorch as spconv
57
+ self.conv = spconv.SparseInverseConv3d(in_channels, out_channels, kernel_size, bias=bias, indice_key=indice_key)
58
+ self.stride = tuple(stride) if isinstance(stride, (list, tuple)) else (stride, stride, stride)
59
+
60
+ def forward(self, x: SparseTensor) -> SparseTensor:
61
+ spatial_changed = any(s != 1 for s in self.stride)
62
+ if spatial_changed:
63
+ # recover the original spconv order
64
+ data = x.get_spatial_cache(f'conv_{self.stride}_unsorted_data')
65
+ bwd = x.get_spatial_cache(f'conv_{self.stride}_sort_bwd')
66
+ data = data.replace_feature(x.feats[bwd])
67
+ if DEBUG:
68
+ assert torch.equal(data.indices, x.coords[bwd]), 'Recover the original order failed'
69
+ else:
70
+ data = x.data
71
+
72
+ new_data = self.conv(data)
73
+ new_shape = [x.shape[0], self.conv.out_channels]
74
+ new_layout = None if spatial_changed else x.layout
75
+ out = SparseTensor(
76
+ new_data, shape=torch.Size(new_shape), layout=new_layout,
77
+ scale=tuple([s // stride for s, stride in zip(x._scale, self.stride)]),
78
+ spatial_cache=x._spatial_cache,
79
+ )
80
+ return out
trellis/modules/sparse/conv/conv_torchsparse.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from .. import SparseTensor
4
+
5
+
6
+ class SparseConv3d(nn.Module):
7
+ def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, bias=True, indice_key=None):
8
+ super(SparseConv3d, self).__init__()
9
+ if 'torchsparse' not in globals():
10
+ import torchsparse
11
+ self.conv = torchsparse.nn.Conv3d(in_channels, out_channels, kernel_size, stride, 0, dilation, bias)
12
+
13
+ def forward(self, x: SparseTensor) -> SparseTensor:
14
+ out = self.conv(x.data)
15
+ new_shape = [x.shape[0], self.conv.out_channels]
16
+ out = SparseTensor(out, shape=torch.Size(new_shape), layout=x.layout if all(s == 1 for s in self.conv.stride) else None)
17
+ out._spatial_cache = x._spatial_cache
18
+ out._scale = tuple([s * stride for s, stride in zip(x._scale, self.conv.stride)])
19
+ return out
20
+
21
+
22
+ class SparseInverseConv3d(nn.Module):
23
+ def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, bias=True, indice_key=None):
24
+ super(SparseInverseConv3d, self).__init__()
25
+ if 'torchsparse' not in globals():
26
+ import torchsparse
27
+ self.conv = torchsparse.nn.Conv3d(in_channels, out_channels, kernel_size, stride, 0, dilation, bias, transposed=True)
28
+
29
+ def forward(self, x: SparseTensor) -> SparseTensor:
30
+ out = self.conv(x.data)
31
+ new_shape = [x.shape[0], self.conv.out_channels]
32
+ out = SparseTensor(out, shape=torch.Size(new_shape), layout=x.layout if all(s == 1 for s in self.conv.stride) else None)
33
+ out._spatial_cache = x._spatial_cache
34
+ out._scale = tuple([s // stride for s, stride in zip(x._scale, self.conv.stride)])
35
+ return out
36
+
37
+
38
+
trellis/modules/sparse/linear.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from . import SparseTensor
4
+
5
+ __all__ = [
6
+ 'SparseLinear'
7
+ ]
8
+
9
+
10
+ class SparseLinear(nn.Linear):
11
+ def __init__(self, in_features, out_features, bias=True):
12
+ super(SparseLinear, self).__init__(in_features, out_features, bias)
13
+
14
+ def forward(self, input: SparseTensor) -> SparseTensor:
15
+ return input.replace(super().forward(input.feats))
trellis/modules/sparse/nonlinearity.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from . import SparseTensor
4
+
5
+ __all__ = [
6
+ 'SparseReLU',
7
+ 'SparseSiLU',
8
+ 'SparseGELU',
9
+ 'SparseActivation'
10
+ ]
11
+
12
+
13
+ class SparseReLU(nn.ReLU):
14
+ def forward(self, input: SparseTensor) -> SparseTensor:
15
+ return input.replace(super().forward(input.feats))
16
+
17
+
18
+ class SparseSiLU(nn.SiLU):
19
+ def forward(self, input: SparseTensor) -> SparseTensor:
20
+ return input.replace(super().forward(input.feats))
21
+
22
+
23
+ class SparseGELU(nn.GELU):
24
+ def forward(self, input: SparseTensor) -> SparseTensor:
25
+ return input.replace(super().forward(input.feats))
26
+
27
+
28
+ class SparseActivation(nn.Module):
29
+ def __init__(self, activation: nn.Module):
30
+ super().__init__()
31
+ self.activation = activation
32
+
33
+ def forward(self, input: SparseTensor) -> SparseTensor:
34
+ return input.replace(self.activation(input.feats))
35
+
trellis/modules/sparse/norm.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from . import SparseTensor
4
+ from . import DEBUG
5
+
6
+ __all__ = [
7
+ 'SparseGroupNorm',
8
+ 'SparseLayerNorm',
9
+ 'SparseGroupNorm32',
10
+ 'SparseLayerNorm32',
11
+ ]
12
+
13
+
14
+ class SparseGroupNorm(nn.GroupNorm):
15
+ def __init__(self, num_groups, num_channels, eps=1e-5, affine=True):
16
+ super(SparseGroupNorm, self).__init__(num_groups, num_channels, eps, affine)
17
+
18
+ def forward(self, input: SparseTensor) -> SparseTensor:
19
+ nfeats = torch.zeros_like(input.feats)
20
+ for k in range(input.shape[0]):
21
+ if DEBUG:
22
+ assert (input.coords[input.layout[k], 0] == k).all(), f"SparseGroupNorm: batch index mismatch"
23
+ bfeats = input.feats[input.layout[k]]
24
+ bfeats = bfeats.permute(1, 0).reshape(1, input.shape[1], -1)
25
+ bfeats = super().forward(bfeats)
26
+ bfeats = bfeats.reshape(input.shape[1], -1).permute(1, 0)
27
+ nfeats[input.layout[k]] = bfeats
28
+ return input.replace(nfeats)
29
+
30
+
31
+ class SparseLayerNorm(nn.LayerNorm):
32
+ def __init__(self, normalized_shape, eps=1e-5, elementwise_affine=True):
33
+ super(SparseLayerNorm, self).__init__(normalized_shape, eps, elementwise_affine)
34
+
35
+ def forward(self, input: SparseTensor) -> SparseTensor:
36
+ nfeats = torch.zeros_like(input.feats)
37
+ for k in range(input.shape[0]):
38
+ bfeats = input.feats[input.layout[k]]
39
+ bfeats = bfeats.permute(1, 0).reshape(1, input.shape[1], -1)
40
+ bfeats = super().forward(bfeats)
41
+ bfeats = bfeats.reshape(input.shape[1], -1).permute(1, 0)
42
+ nfeats[input.layout[k]] = bfeats
43
+ return input.replace(nfeats)
44
+
45
+
46
+ class SparseGroupNorm32(SparseGroupNorm):
47
+ """
48
+ A GroupNorm layer that converts to float32 before the forward pass.
49
+ """
50
+ def forward(self, x: SparseTensor) -> SparseTensor:
51
+ return super().forward(x.float()).type(x.dtype)
52
+
53
+ class SparseLayerNorm32(SparseLayerNorm):
54
+ """
55
+ A LayerNorm layer that converts to float32 before the forward pass.
56
+ """
57
+ def forward(self, x: SparseTensor) -> SparseTensor:
58
+ return super().forward(x.float()).type(x.dtype)
trellis/modules/sparse/spatial.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+ import torch
3
+ import torch.nn as nn
4
+ from . import SparseTensor
5
+
6
+ __all__ = [
7
+ 'SparseDownsample',
8
+ 'SparseUpsample',
9
+ 'SparseSubdivide'
10
+ ]
11
+
12
+
13
+ class SparseDownsample(nn.Module):
14
+ """
15
+ Downsample a sparse tensor by a factor of `factor`.
16
+ Implemented as average pooling.
17
+ """
18
+ def __init__(self, factor: Union[int, Tuple[int, ...], List[int]]):
19
+ super(SparseDownsample, self).__init__()
20
+ self.factor = tuple(factor) if isinstance(factor, (list, tuple)) else factor
21
+
22
+ def forward(self, input: SparseTensor) -> SparseTensor:
23
+ DIM = input.coords.shape[-1] - 1
24
+ factor = self.factor if isinstance(self.factor, tuple) else (self.factor,) * DIM
25
+ assert DIM == len(factor), 'Input coordinates must have the same dimension as the downsample factor.'
26
+
27
+ coord = list(input.coords.unbind(dim=-1))
28
+ for i, f in enumerate(factor):
29
+ coord[i+1] = coord[i+1] // f
30
+
31
+ MAX = [coord[i+1].max().item() + 1 for i in range(DIM)]
32
+ OFFSET = torch.cumprod(torch.tensor(MAX[::-1]), 0).tolist()[::-1] + [1]
33
+ code = sum([c * o for c, o in zip(coord, OFFSET)])
34
+ code, idx = code.unique(return_inverse=True)
35
+
36
+ new_feats = torch.scatter_reduce(
37
+ torch.zeros(code.shape[0], input.feats.shape[1], device=input.feats.device, dtype=input.feats.dtype),
38
+ dim=0,
39
+ index=idx.unsqueeze(1).expand(-1, input.feats.shape[1]),
40
+ src=input.feats,
41
+ reduce='mean'
42
+ )
43
+ new_coords = torch.stack(
44
+ [code // OFFSET[0]] +
45
+ [(code // OFFSET[i+1]) % MAX[i] for i in range(DIM)],
46
+ dim=-1
47
+ )
48
+ out = SparseTensor(new_feats, new_coords, input.shape,)
49
+ out._scale = tuple([s // f for s, f in zip(input._scale, factor)])
50
+ out._spatial_cache = input._spatial_cache
51
+
52
+ out.register_spatial_cache(f'upsample_{factor}_coords', input.coords)
53
+ out.register_spatial_cache(f'upsample_{factor}_layout', input.layout)
54
+ out.register_spatial_cache(f'upsample_{factor}_idx', idx)
55
+
56
+ return out
57
+
58
+
59
+ class SparseUpsample(nn.Module):
60
+ """
61
+ Upsample a sparse tensor by a factor of `factor`.
62
+ Implemented as nearest neighbor interpolation.
63
+ """
64
+ def __init__(self, factor: Union[int, Tuple[int, int, int], List[int]]):
65
+ super(SparseUpsample, self).__init__()
66
+ self.factor = tuple(factor) if isinstance(factor, (list, tuple)) else factor
67
+
68
+ def forward(self, input: SparseTensor) -> SparseTensor:
69
+ DIM = input.coords.shape[-1] - 1
70
+ factor = self.factor if isinstance(self.factor, tuple) else (self.factor,) * DIM
71
+ assert DIM == len(factor), 'Input coordinates must have the same dimension as the upsample factor.'
72
+
73
+ new_coords = input.get_spatial_cache(f'upsample_{factor}_coords')
74
+ new_layout = input.get_spatial_cache(f'upsample_{factor}_layout')
75
+ idx = input.get_spatial_cache(f'upsample_{factor}_idx')
76
+ if any([x is None for x in [new_coords, new_layout, idx]]):
77
+ raise ValueError('Upsample cache not found. SparseUpsample must be paired with SparseDownsample.')
78
+ new_feats = input.feats[idx]
79
+ out = SparseTensor(new_feats, new_coords, input.shape, new_layout)
80
+ out._scale = tuple([s * f for s, f in zip(input._scale, factor)])
81
+ out._spatial_cache = input._spatial_cache
82
+ return out
83
+
84
+ class SparseSubdivide(nn.Module):
85
+ """
86
+ Upsample a sparse tensor by a factor of `factor`.
87
+ Implemented as nearest neighbor interpolation.
88
+ """
89
+ def __init__(self):
90
+ super(SparseSubdivide, self).__init__()
91
+
92
+ def forward(self, input: SparseTensor) -> SparseTensor:
93
+ DIM = input.coords.shape[-1] - 1
94
+ # upsample scale=2^DIM
95
+ n_cube = torch.ones([2] * DIM, device=input.device, dtype=torch.int)
96
+ n_coords = torch.nonzero(n_cube)
97
+ n_coords = torch.cat([torch.zeros_like(n_coords[:, :1]), n_coords], dim=-1)
98
+ factor = n_coords.shape[0]
99
+ assert factor == 2 ** DIM
100
+ # print(n_coords.shape)
101
+ new_coords = input.coords.clone()
102
+ new_coords[:, 1:] *= 2
103
+ new_coords = new_coords.unsqueeze(1) + n_coords.unsqueeze(0).to(new_coords.dtype)
104
+
105
+ new_feats = input.feats.unsqueeze(1).expand(input.feats.shape[0], factor, *input.feats.shape[1:])
106
+ out = SparseTensor(new_feats.flatten(0, 1), new_coords.flatten(0, 1), input.shape)
107
+ out._scale = input._scale * 2
108
+ out._spatial_cache = input._spatial_cache
109
+ return out
110
+
trellis/modules/sparse/transformer/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .blocks import *
2
+ from .modulated import *
trellis/modules/sparse/transformer/blocks.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+ import torch
3
+ import torch.nn as nn
4
+ from ..basic import SparseTensor
5
+ from ..linear import SparseLinear
6
+ from ..nonlinearity import SparseGELU
7
+ from ..attention import SparseMultiHeadAttention, SerializeMode
8
+ from ...norm import LayerNorm32
9
+
10
+
11
+ class SparseFeedForwardNet(nn.Module):
12
+ def __init__(self, channels: int, mlp_ratio: float = 4.0):
13
+ super().__init__()
14
+ self.mlp = nn.Sequential(
15
+ SparseLinear(channels, int(channels * mlp_ratio)),
16
+ SparseGELU(approximate="tanh"),
17
+ SparseLinear(int(channels * mlp_ratio), channels),
18
+ )
19
+
20
+ def forward(self, x: SparseTensor) -> SparseTensor:
21
+ return self.mlp(x)
22
+
23
+
24
+ class SparseTransformerBlock(nn.Module):
25
+ """
26
+ Sparse Transformer block (MSA + FFN).
27
+ """
28
+ def __init__(
29
+ self,
30
+ channels: int,
31
+ num_heads: int,
32
+ mlp_ratio: float = 4.0,
33
+ attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",
34
+ window_size: Optional[int] = None,
35
+ shift_sequence: Optional[int] = None,
36
+ shift_window: Optional[Tuple[int, int, int]] = None,
37
+ serialize_mode: Optional[SerializeMode] = None,
38
+ use_checkpoint: bool = False,
39
+ use_rope: bool = False,
40
+ qk_rms_norm: bool = False,
41
+ qkv_bias: bool = True,
42
+ ln_affine: bool = False,
43
+ ):
44
+ super().__init__()
45
+ self.use_checkpoint = use_checkpoint
46
+ self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
47
+ self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
48
+ self.attn = SparseMultiHeadAttention(
49
+ channels,
50
+ num_heads=num_heads,
51
+ attn_mode=attn_mode,
52
+ window_size=window_size,
53
+ shift_sequence=shift_sequence,
54
+ shift_window=shift_window,
55
+ serialize_mode=serialize_mode,
56
+ qkv_bias=qkv_bias,
57
+ use_rope=use_rope,
58
+ qk_rms_norm=qk_rms_norm,
59
+ )
60
+ self.mlp = SparseFeedForwardNet(
61
+ channels,
62
+ mlp_ratio=mlp_ratio,
63
+ )
64
+
65
+ def _forward(self, x: SparseTensor) -> SparseTensor:
66
+ h = x.replace(self.norm1(x.feats))
67
+ h = self.attn(h)
68
+ x = x + h
69
+ h = x.replace(self.norm2(x.feats))
70
+ h = self.mlp(h)
71
+ x = x + h
72
+ return x
73
+
74
+ def forward(self, x: SparseTensor) -> SparseTensor:
75
+ if self.use_checkpoint:
76
+ return torch.utils.checkpoint.checkpoint(self._forward, x, use_reentrant=False)
77
+ else:
78
+ return self._forward(x)
79
+
80
+
81
+ class SparseTransformerCrossBlock(nn.Module):
82
+ """
83
+ Sparse Transformer cross-attention block (MSA + MCA + FFN).
84
+ """
85
+ def __init__(
86
+ self,
87
+ channels: int,
88
+ ctx_channels: int,
89
+ num_heads: int,
90
+ mlp_ratio: float = 4.0,
91
+ attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",
92
+ window_size: Optional[int] = None,
93
+ shift_sequence: Optional[int] = None,
94
+ shift_window: Optional[Tuple[int, int, int]] = None,
95
+ serialize_mode: Optional[SerializeMode] = None,
96
+ use_checkpoint: bool = False,
97
+ use_rope: bool = False,
98
+ qk_rms_norm: bool = False,
99
+ qk_rms_norm_cross: bool = False,
100
+ qkv_bias: bool = True,
101
+ ln_affine: bool = False,
102
+ ):
103
+ super().__init__()
104
+ self.use_checkpoint = use_checkpoint
105
+ self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
106
+ self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
107
+ self.norm3 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
108
+ self.self_attn = SparseMultiHeadAttention(
109
+ channels,
110
+ num_heads=num_heads,
111
+ type="self",
112
+ attn_mode=attn_mode,
113
+ window_size=window_size,
114
+ shift_sequence=shift_sequence,
115
+ shift_window=shift_window,
116
+ serialize_mode=serialize_mode,
117
+ qkv_bias=qkv_bias,
118
+ use_rope=use_rope,
119
+ qk_rms_norm=qk_rms_norm,
120
+ )
121
+ self.cross_attn = SparseMultiHeadAttention(
122
+ channels,
123
+ ctx_channels=ctx_channels,
124
+ num_heads=num_heads,
125
+ type="cross",
126
+ attn_mode="full",
127
+ qkv_bias=qkv_bias,
128
+ qk_rms_norm=qk_rms_norm_cross,
129
+ )
130
+ self.mlp = SparseFeedForwardNet(
131
+ channels,
132
+ mlp_ratio=mlp_ratio,
133
+ )
134
+
135
+ def _forward(self, x: SparseTensor, mod: torch.Tensor, context: torch.Tensor):
136
+ h = x.replace(self.norm1(x.feats))
137
+ h = self.self_attn(h)
138
+ x = x + h
139
+ h = x.replace(self.norm2(x.feats))
140
+ h = self.cross_attn(h, context)
141
+ x = x + h
142
+ h = x.replace(self.norm3(x.feats))
143
+ h = self.mlp(h)
144
+ x = x + h
145
+ return x
146
+
147
+ def forward(self, x: SparseTensor, context: torch.Tensor):
148
+ if self.use_checkpoint:
149
+ return torch.utils.checkpoint.checkpoint(self._forward, x, context, use_reentrant=False)
150
+ else:
151
+ return self._forward(x, context)
trellis/modules/sparse/transformer/modulated.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+ import torch
3
+ import torch.nn as nn
4
+ from ..basic import SparseTensor
5
+ from ..attention import SparseMultiHeadAttention, SerializeMode
6
+ from ...norm import LayerNorm32
7
+ from .blocks import SparseFeedForwardNet
8
+
9
+
10
+ class ModulatedSparseTransformerBlock(nn.Module):
11
+ """
12
+ Sparse Transformer block (MSA + FFN) with adaptive layer norm conditioning.
13
+ """
14
+ def __init__(
15
+ self,
16
+ channels: int,
17
+ num_heads: int,
18
+ mlp_ratio: float = 4.0,
19
+ attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",
20
+ window_size: Optional[int] = None,
21
+ shift_sequence: Optional[int] = None,
22
+ shift_window: Optional[Tuple[int, int, int]] = None,
23
+ serialize_mode: Optional[SerializeMode] = None,
24
+ use_checkpoint: bool = False,
25
+ use_rope: bool = False,
26
+ qk_rms_norm: bool = False,
27
+ qkv_bias: bool = True,
28
+ share_mod: bool = False,
29
+ ):
30
+ super().__init__()
31
+ self.use_checkpoint = use_checkpoint
32
+ self.share_mod = share_mod
33
+ self.norm1 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
34
+ self.norm2 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
35
+ self.attn = SparseMultiHeadAttention(
36
+ channels,
37
+ num_heads=num_heads,
38
+ attn_mode=attn_mode,
39
+ window_size=window_size,
40
+ shift_sequence=shift_sequence,
41
+ shift_window=shift_window,
42
+ serialize_mode=serialize_mode,
43
+ qkv_bias=qkv_bias,
44
+ use_rope=use_rope,
45
+ qk_rms_norm=qk_rms_norm,
46
+ )
47
+ self.mlp = SparseFeedForwardNet(
48
+ channels,
49
+ mlp_ratio=mlp_ratio,
50
+ )
51
+ if not share_mod:
52
+ self.adaLN_modulation = nn.Sequential(
53
+ nn.SiLU(),
54
+ nn.Linear(channels, 6 * channels, bias=True)
55
+ )
56
+
57
+ def _forward(self, x: SparseTensor, mod: torch.Tensor) -> SparseTensor:
58
+ if self.share_mod:
59
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(6, dim=1)
60
+ else:
61
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(mod).chunk(6, dim=1)
62
+ h = x.replace(self.norm1(x.feats))
63
+ h = h * (1 + scale_msa) + shift_msa
64
+ h = self.attn(h)
65
+ h = h * gate_msa
66
+ x = x + h
67
+ h = x.replace(self.norm2(x.feats))
68
+ h = h * (1 + scale_mlp) + shift_mlp
69
+ h = self.mlp(h)
70
+ h = h * gate_mlp
71
+ x = x + h
72
+ return x
73
+
74
+ def forward(self, x: SparseTensor, mod: torch.Tensor) -> SparseTensor:
75
+ if self.use_checkpoint:
76
+ return torch.utils.checkpoint.checkpoint(self._forward, x, mod, use_reentrant=False)
77
+ else:
78
+ return self._forward(x, mod)
79
+
80
+
81
+ class ModulatedSparseTransformerCrossBlock(nn.Module):
82
+ """
83
+ Sparse Transformer cross-attention block (MSA + MCA + FFN) with adaptive layer norm conditioning.
84
+ """
85
+ def __init__(
86
+ self,
87
+ channels: int,
88
+ ctx_channels: int,
89
+ num_heads: int,
90
+ mlp_ratio: float = 4.0,
91
+ attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",
92
+ window_size: Optional[int] = None,
93
+ shift_sequence: Optional[int] = None,
94
+ shift_window: Optional[Tuple[int, int, int]] = None,
95
+ serialize_mode: Optional[SerializeMode] = None,
96
+ use_checkpoint: bool = False,
97
+ use_rope: bool = False,
98
+ qk_rms_norm: bool = False,
99
+ qk_rms_norm_cross: bool = False,
100
+ qkv_bias: bool = True,
101
+ share_mod: bool = False,
102
+
103
+ ):
104
+ super().__init__()
105
+ self.use_checkpoint = use_checkpoint
106
+ self.share_mod = share_mod
107
+ self.norm1 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
108
+ self.norm2 = LayerNorm32(channels, elementwise_affine=True, eps=1e-6)
109
+ self.norm3 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
110
+ self.self_attn = SparseMultiHeadAttention(
111
+ channels,
112
+ num_heads=num_heads,
113
+ type="self",
114
+ attn_mode=attn_mode,
115
+ window_size=window_size,
116
+ shift_sequence=shift_sequence,
117
+ shift_window=shift_window,
118
+ serialize_mode=serialize_mode,
119
+ qkv_bias=qkv_bias,
120
+ use_rope=use_rope,
121
+ qk_rms_norm=qk_rms_norm,
122
+ )
123
+ self.cross_attn = SparseMultiHeadAttention(
124
+ channels,
125
+ ctx_channels=ctx_channels,
126
+ num_heads=num_heads,
127
+ type="cross",
128
+ attn_mode="full",
129
+ qkv_bias=qkv_bias,
130
+ qk_rms_norm=qk_rms_norm_cross,
131
+ )
132
+ self.mlp = SparseFeedForwardNet(
133
+ channels,
134
+ mlp_ratio=mlp_ratio,
135
+ )
136
+ if not share_mod:
137
+ self.adaLN_modulation = nn.Sequential(
138
+ nn.SiLU(),
139
+ nn.Linear(channels, 6 * channels, bias=True)
140
+ )
141
+
142
+ def _forward(self, x: SparseTensor, mod: torch.Tensor, context: torch.Tensor) -> SparseTensor:
143
+ if self.share_mod:
144
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(6, dim=1)
145
+ else:
146
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(mod).chunk(6, dim=1)
147
+ h = x.replace(self.norm1(x.feats))
148
+ h = h * (1 + scale_msa) + shift_msa
149
+ h = self.self_attn(h)
150
+ h = h * gate_msa
151
+ x = x + h
152
+ h = x.replace(self.norm2(x.feats))
153
+ h = self.cross_attn(h, context)
154
+ x = x + h
155
+ h = x.replace(self.norm3(x.feats))
156
+ h = h * (1 + scale_mlp) + shift_mlp
157
+ h = self.mlp(h)
158
+ h = h * gate_mlp
159
+ x = x + h
160
+ return x
161
+
162
+ def forward(self, x: SparseTensor, mod: torch.Tensor, context: torch.Tensor) -> SparseTensor:
163
+ if self.use_checkpoint:
164
+ return torch.utils.checkpoint.checkpoint(self._forward, x, mod, context, use_reentrant=False)
165
+ else:
166
+ return self._forward(x, mod, context)
trellis/modules/spatial.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ def pixel_shuffle_3d(x: torch.Tensor, scale_factor: int) -> torch.Tensor:
5
+ """
6
+ 3D pixel shuffle.
7
+ """
8
+ B, C, H, W, D = x.shape
9
+ C_ = C // scale_factor**3
10
+ x = x.reshape(B, C_, scale_factor, scale_factor, scale_factor, H, W, D)
11
+ x = x.permute(0, 1, 5, 2, 6, 3, 7, 4)
12
+ x = x.reshape(B, C_, H*scale_factor, W*scale_factor, D*scale_factor)
13
+ return x
14
+
15
+
16
+ def patchify(x: torch.Tensor, patch_size: int):
17
+ """
18
+ Patchify a tensor.
19
+
20
+ Args:
21
+ x (torch.Tensor): (N, C, *spatial) tensor
22
+ patch_size (int): Patch size
23
+ """
24
+ DIM = x.dim() - 2
25
+ for d in range(2, DIM + 2):
26
+ assert x.shape[d] % patch_size == 0, f"Dimension {d} of input tensor must be divisible by patch size, got {x.shape[d]} and {patch_size}"
27
+
28
+ x = x.reshape(*x.shape[:2], *sum([[x.shape[d] // patch_size, patch_size] for d in range(2, DIM + 2)], []))
29
+ x = x.permute(0, 1, *([2 * i + 3 for i in range(DIM)] + [2 * i + 2 for i in range(DIM)]))
30
+ x = x.reshape(x.shape[0], x.shape[1] * (patch_size ** DIM), *(x.shape[-DIM:]))
31
+ return x
32
+
33
+
34
+ def unpatchify(x: torch.Tensor, patch_size: int):
35
+ """
36
+ Unpatchify a tensor.
37
+
38
+ Args:
39
+ x (torch.Tensor): (N, C, *spatial) tensor
40
+ patch_size (int): Patch size
41
+ """
42
+ DIM = x.dim() - 2
43
+ assert x.shape[1] % (patch_size ** DIM) == 0, f"Second dimension of input tensor must be divisible by patch size to unpatchify, got {x.shape[1]} and {patch_size ** DIM}"
44
+
45
+ x = x.reshape(x.shape[0], x.shape[1] // (patch_size ** DIM), *([patch_size] * DIM), *(x.shape[-DIM:]))
46
+ x = x.permute(0, 1, *(sum([[2 + DIM + i, 2 + i] for i in range(DIM)], [])))
47
+ x = x.reshape(x.shape[0], x.shape[1], *[x.shape[2 + 2 * i] * patch_size for i in range(DIM)])
48
+ return x
trellis/modules/transformer/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .blocks import *
2
+ from .modulated import *
trellis/modules/transformer/blocks.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+ import torch
3
+ import torch.nn as nn
4
+ from ..attention import MultiHeadAttention
5
+ from ..norm import LayerNorm32
6
+
7
+
8
+ class AbsolutePositionEmbedder(nn.Module):
9
+ """
10
+ Embeds spatial positions into vector representations.
11
+ """
12
+ def __init__(self, channels: int, in_channels: int = 3):
13
+ super().__init__()
14
+ self.channels = channels
15
+ self.in_channels = in_channels
16
+ self.freq_dim = channels // in_channels // 2
17
+ self.freqs = torch.arange(self.freq_dim, dtype=torch.float32) / self.freq_dim
18
+ self.freqs = 1.0 / (10000 ** self.freqs)
19
+
20
+ def _sin_cos_embedding(self, x: torch.Tensor) -> torch.Tensor:
21
+ """
22
+ Create sinusoidal position embeddings.
23
+
24
+ Args:
25
+ x: a 1-D Tensor of N indices
26
+
27
+ Returns:
28
+ an (N, D) Tensor of positional embeddings.
29
+ """
30
+ self.freqs = self.freqs.to(x.device)
31
+ out = torch.outer(x, self.freqs)
32
+ out = torch.cat([torch.sin(out), torch.cos(out)], dim=-1)
33
+ return out
34
+
35
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
36
+ """
37
+ Args:
38
+ x (torch.Tensor): (N, D) tensor of spatial positions
39
+ """
40
+ N, D = x.shape
41
+ assert D == self.in_channels, "Input dimension must match number of input channels"
42
+ embed = self._sin_cos_embedding(x.reshape(-1))
43
+ embed = embed.reshape(N, -1)
44
+ if embed.shape[1] < self.channels:
45
+ embed = torch.cat([embed, torch.zeros(N, self.channels - embed.shape[1], device=embed.device)], dim=-1)
46
+ return embed
47
+
48
+
49
+ class FeedForwardNet(nn.Module):
50
+ def __init__(self, channels: int, mlp_ratio: float = 4.0):
51
+ super().__init__()
52
+ self.mlp = nn.Sequential(
53
+ nn.Linear(channels, int(channels * mlp_ratio)),
54
+ nn.GELU(approximate="tanh"),
55
+ nn.Linear(int(channels * mlp_ratio), channels),
56
+ )
57
+
58
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
59
+ return self.mlp(x)
60
+
61
+
62
+ class TransformerBlock(nn.Module):
63
+ """
64
+ Transformer block (MSA + FFN).
65
+ """
66
+ def __init__(
67
+ self,
68
+ channels: int,
69
+ num_heads: int,
70
+ mlp_ratio: float = 4.0,
71
+ attn_mode: Literal["full", "windowed"] = "full",
72
+ window_size: Optional[int] = None,
73
+ shift_window: Optional[int] = None,
74
+ use_checkpoint: bool = False,
75
+ use_rope: bool = False,
76
+ qk_rms_norm: bool = False,
77
+ qkv_bias: bool = True,
78
+ ln_affine: bool = False,
79
+ ):
80
+ super().__init__()
81
+ self.use_checkpoint = use_checkpoint
82
+ self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
83
+ self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
84
+ self.attn = MultiHeadAttention(
85
+ channels,
86
+ num_heads=num_heads,
87
+ attn_mode=attn_mode,
88
+ window_size=window_size,
89
+ shift_window=shift_window,
90
+ qkv_bias=qkv_bias,
91
+ use_rope=use_rope,
92
+ qk_rms_norm=qk_rms_norm,
93
+ )
94
+ self.mlp = FeedForwardNet(
95
+ channels,
96
+ mlp_ratio=mlp_ratio,
97
+ )
98
+
99
+ def _forward(self, x: torch.Tensor) -> torch.Tensor:
100
+ h = self.norm1(x)
101
+ h = self.attn(h)
102
+ x = x + h
103
+ h = self.norm2(x)
104
+ h = self.mlp(h)
105
+ x = x + h
106
+ return x
107
+
108
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
109
+ if self.use_checkpoint:
110
+ return torch.utils.checkpoint.checkpoint(self._forward, x, use_reentrant=False)
111
+ else:
112
+ return self._forward(x)
113
+
114
+
115
+ class TransformerCrossBlock(nn.Module):
116
+ """
117
+ Transformer cross-attention block (MSA + MCA + FFN).
118
+ """
119
+ def __init__(
120
+ self,
121
+ channels: int,
122
+ ctx_channels: int,
123
+ num_heads: int,
124
+ mlp_ratio: float = 4.0,
125
+ attn_mode: Literal["full", "windowed"] = "full",
126
+ window_size: Optional[int] = None,
127
+ shift_window: Optional[Tuple[int, int, int]] = None,
128
+ use_checkpoint: bool = False,
129
+ use_rope: bool = False,
130
+ qk_rms_norm: bool = False,
131
+ qk_rms_norm_cross: bool = False,
132
+ qkv_bias: bool = True,
133
+ ln_affine: bool = False,
134
+ ):
135
+ super().__init__()
136
+ self.use_checkpoint = use_checkpoint
137
+ self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
138
+ self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
139
+ self.norm3 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
140
+ self.self_attn = MultiHeadAttention(
141
+ channels,
142
+ num_heads=num_heads,
143
+ type="self",
144
+ attn_mode=attn_mode,
145
+ window_size=window_size,
146
+ shift_window=shift_window,
147
+ qkv_bias=qkv_bias,
148
+ use_rope=use_rope,
149
+ qk_rms_norm=qk_rms_norm,
150
+ )
151
+ self.cross_attn = MultiHeadAttention(
152
+ channels,
153
+ ctx_channels=ctx_channels,
154
+ num_heads=num_heads,
155
+ type="cross",
156
+ attn_mode="full",
157
+ qkv_bias=qkv_bias,
158
+ qk_rms_norm=qk_rms_norm_cross,
159
+ )
160
+ self.mlp = FeedForwardNet(
161
+ channels,
162
+ mlp_ratio=mlp_ratio,
163
+ )
164
+
165
+ def _forward(self, x: torch.Tensor, context: torch.Tensor):
166
+ h = self.norm1(x)
167
+ h = self.self_attn(h)
168
+ x = x + h
169
+ h = self.norm2(x)
170
+ h = self.cross_attn(h, context)
171
+ x = x + h
172
+ h = self.norm3(x)
173
+ h = self.mlp(h)
174
+ x = x + h
175
+ return x
176
+
177
+ def forward(self, x: torch.Tensor, context: torch.Tensor):
178
+ if self.use_checkpoint:
179
+ return torch.utils.checkpoint.checkpoint(self._forward, x, context, use_reentrant=False)
180
+ else:
181
+ return self._forward(x, context)
182
+
trellis/modules/transformer/modulated.py ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+ import torch
3
+ import torch.nn as nn
4
+ from ..attention import MultiHeadAttention
5
+ from ..norm import LayerNorm32
6
+ from .blocks import FeedForwardNet
7
+
8
+
9
+ class ModulatedTransformerBlock(nn.Module):
10
+ """
11
+ Transformer block (MSA + FFN) with adaptive layer norm conditioning.
12
+ """
13
+ def __init__(
14
+ self,
15
+ channels: int,
16
+ num_heads: int,
17
+ mlp_ratio: float = 4.0,
18
+ attn_mode: Literal["full", "windowed"] = "full",
19
+ window_size: Optional[int] = None,
20
+ shift_window: Optional[Tuple[int, int, int]] = None,
21
+ use_checkpoint: bool = False,
22
+ use_rope: bool = False,
23
+ qk_rms_norm: bool = False,
24
+ qkv_bias: bool = True,
25
+ share_mod: bool = False,
26
+ ):
27
+ super().__init__()
28
+ self.use_checkpoint = use_checkpoint
29
+ self.share_mod = share_mod
30
+ self.norm1 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
31
+ self.norm2 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
32
+ self.attn = MultiHeadAttention(
33
+ channels,
34
+ num_heads=num_heads,
35
+ attn_mode=attn_mode,
36
+ window_size=window_size,
37
+ shift_window=shift_window,
38
+ qkv_bias=qkv_bias,
39
+ use_rope=use_rope,
40
+ qk_rms_norm=qk_rms_norm,
41
+ )
42
+ self.mlp = FeedForwardNet(
43
+ channels,
44
+ mlp_ratio=mlp_ratio,
45
+ )
46
+ if not share_mod:
47
+ self.adaLN_modulation = nn.Sequential(
48
+ nn.SiLU(),
49
+ nn.Linear(channels, 6 * channels, bias=True)
50
+ )
51
+
52
+ def _forward(self, x: torch.Tensor, mod: torch.Tensor) -> torch.Tensor:
53
+ if self.share_mod:
54
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(6, dim=1)
55
+ else:
56
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(mod).chunk(6, dim=1)
57
+ h = self.norm1(x)
58
+ h = h * (1 + scale_msa.unsqueeze(1)) + shift_msa.unsqueeze(1)
59
+ h = self.attn(h)
60
+ h = h * gate_msa.unsqueeze(1)
61
+ x = x + h
62
+ h = self.norm2(x)
63
+ h = h * (1 + scale_mlp.unsqueeze(1)) + shift_mlp.unsqueeze(1)
64
+ h = self.mlp(h)
65
+ h = h * gate_mlp.unsqueeze(1)
66
+ x = x + h
67
+ return x
68
+
69
+ def forward(self, x: torch.Tensor, mod: torch.Tensor) -> torch.Tensor:
70
+ if self.use_checkpoint:
71
+ return torch.utils.checkpoint.checkpoint(self._forward, x, mod, use_reentrant=False)
72
+ else:
73
+ return self._forward(x, mod)
74
+
75
+
76
+ class ModulatedTransformerCrossBlock(nn.Module):
77
+ """
78
+ Transformer cross-attention block (MSA + MCA + FFN) with adaptive layer norm conditioning.
79
+ """
80
+ def __init__(
81
+ self,
82
+ channels: int,
83
+ ctx_channels: int,
84
+ num_heads: int,
85
+ mlp_ratio: float = 4.0,
86
+ attn_mode: Literal["full", "windowed"] = "full",
87
+ window_size: Optional[int] = None,
88
+ shift_window: Optional[Tuple[int, int, int]] = None,
89
+ use_checkpoint: bool = False,
90
+ use_rope: bool = False,
91
+ qk_rms_norm: bool = False,
92
+ qk_rms_norm_cross: bool = False,
93
+ qkv_bias: bool = True,
94
+ share_mod: bool = False,
95
+ ):
96
+ super().__init__()
97
+ self.use_checkpoint = use_checkpoint
98
+ self.share_mod = share_mod
99
+ self.norm1 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
100
+ self.norm2 = LayerNorm32(channels, elementwise_affine=True, eps=1e-6)
101
+ self.norm3 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
102
+ self.self_attn = MultiHeadAttention(
103
+ channels,
104
+ num_heads=num_heads,
105
+ type="self",
106
+ attn_mode=attn_mode,
107
+ window_size=window_size,
108
+ shift_window=shift_window,
109
+ qkv_bias=qkv_bias,
110
+ use_rope=use_rope,
111
+ qk_rms_norm=qk_rms_norm,
112
+ )
113
+ self.cross_attn = MultiHeadAttention(
114
+ channels,
115
+ ctx_channels=ctx_channels,
116
+ num_heads=num_heads,
117
+ type="cross",
118
+ attn_mode="full",
119
+ qkv_bias=qkv_bias,
120
+ qk_rms_norm=qk_rms_norm_cross,
121
+ )
122
+ self.mlp = FeedForwardNet(
123
+ channels,
124
+ mlp_ratio=mlp_ratio,
125
+ )
126
+ if not share_mod:
127
+ self.adaLN_modulation = nn.Sequential(
128
+ nn.SiLU(),
129
+ nn.Linear(channels, 6 * channels, bias=True)
130
+ )
131
+
132
+ def _forward(self, x: torch.Tensor, mod: torch.Tensor, context: torch.Tensor):
133
+ if self.share_mod:
134
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(6, dim=1)
135
+ else:
136
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(mod).chunk(6, dim=1)
137
+ h = self.norm1(x)
138
+ h = h * (1 + scale_msa.unsqueeze(1)) + shift_msa.unsqueeze(1)
139
+ h = self.self_attn(h)
140
+ h = h * gate_msa.unsqueeze(1)
141
+ x = x + h
142
+ h = self.norm2(x)
143
+ h = self.cross_attn(h, context)
144
+ x = x + h
145
+ h = self.norm3(x)
146
+ h = h * (1 + scale_mlp.unsqueeze(1)) + shift_mlp.unsqueeze(1)
147
+ h = self.mlp(h)
148
+ h = h * gate_mlp.unsqueeze(1)
149
+ x = x + h
150
+ return x
151
+
152
+ def forward(self, x: torch.Tensor, mod: torch.Tensor, context: torch.Tensor):
153
+ if self.use_checkpoint:
154
+ return torch.utils.checkpoint.checkpoint(self._forward, x, mod, context, use_reentrant=False)
155
+ else:
156
+ return self._forward(x, mod, context)
157
+
trellis/modules/utils.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ from ..modules import sparse as sp
3
+
4
+ FP16_MODULES = (
5
+ nn.Conv1d,
6
+ nn.Conv2d,
7
+ nn.Conv3d,
8
+ nn.ConvTranspose1d,
9
+ nn.ConvTranspose2d,
10
+ nn.ConvTranspose3d,
11
+ nn.Linear,
12
+ sp.SparseConv3d,
13
+ sp.SparseInverseConv3d,
14
+ sp.SparseLinear,
15
+ )
16
+
17
+ def convert_module_to_f16(l):
18
+ """
19
+ Convert primitive modules to float16.
20
+ """
21
+ if isinstance(l, FP16_MODULES):
22
+ for p in l.parameters():
23
+ p.data = p.data.half()
24
+
25
+
26
+ def convert_module_to_f32(l):
27
+ """
28
+ Convert primitive modules to float32, undoing convert_module_to_f16().
29
+ """
30
+ if isinstance(l, FP16_MODULES):
31
+ for p in l.parameters():
32
+ p.data = p.data.float()
33
+
34
+
35
+ def zero_module(module):
36
+ """
37
+ Zero out the parameters of a module and return it.
38
+ """
39
+ for p in module.parameters():
40
+ p.detach().zero_()
41
+ return module
42
+
43
+
44
+ def scale_module(module, scale):
45
+ """
46
+ Scale the parameters of a module and return it.
47
+ """
48
+ for p in module.parameters():
49
+ p.detach().mul_(scale)
50
+ return module
51
+
52
+
53
+ def modulate(x, shift, scale):
54
+ return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)