cavargas10 commited on
Commit
0058b7c
·
verified ·
1 Parent(s): 87b3c4b

Delete trellis/modules

Browse files
trellis/modules/attention/__init__.py DELETED
@@ -1,36 +0,0 @@
1
- from typing import *
2
-
3
- BACKEND = 'flash_attn'
4
- DEBUG = False
5
-
6
- def __from_env():
7
- import os
8
-
9
- global BACKEND
10
- global DEBUG
11
-
12
- env_attn_backend = os.environ.get('ATTN_BACKEND')
13
- env_sttn_debug = os.environ.get('ATTN_DEBUG')
14
-
15
- if env_attn_backend is not None and env_attn_backend in ['xformers', 'flash_attn', 'sdpa', 'naive']:
16
- BACKEND = env_attn_backend
17
- if env_sttn_debug is not None:
18
- DEBUG = env_sttn_debug == '1'
19
-
20
- print(f"[ATTENTION] Using backend: {BACKEND}")
21
-
22
-
23
- __from_env()
24
-
25
-
26
- def set_backend(backend: Literal['xformers', 'flash_attn']):
27
- global BACKEND
28
- BACKEND = backend
29
-
30
- def set_debug(debug: bool):
31
- global DEBUG
32
- DEBUG = debug
33
-
34
-
35
- from .full_attn import *
36
- from .modules import *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
trellis/modules/attention/full_attn.py DELETED
@@ -1,140 +0,0 @@
1
- from typing import *
2
- import torch
3
- import math
4
- from . import DEBUG, BACKEND
5
-
6
- if BACKEND == 'xformers':
7
- import xformers.ops as xops
8
- elif BACKEND == 'flash_attn':
9
- import flash_attn
10
- elif BACKEND == 'sdpa':
11
- from torch.nn.functional import scaled_dot_product_attention as sdpa
12
- elif BACKEND == 'naive':
13
- pass
14
- else:
15
- raise ValueError(f"Unknown attention backend: {BACKEND}")
16
-
17
-
18
- __all__ = [
19
- 'scaled_dot_product_attention',
20
- ]
21
-
22
-
23
- def _naive_sdpa(q, k, v):
24
- """
25
- Naive implementation of scaled dot product attention.
26
- """
27
- q = q.permute(0, 2, 1, 3) # [N, H, L, C]
28
- k = k.permute(0, 2, 1, 3) # [N, H, L, C]
29
- v = v.permute(0, 2, 1, 3) # [N, H, L, C]
30
- scale_factor = 1 / math.sqrt(q.size(-1))
31
- attn_weight = q @ k.transpose(-2, -1) * scale_factor
32
- attn_weight = torch.softmax(attn_weight, dim=-1)
33
- out = attn_weight @ v
34
- out = out.permute(0, 2, 1, 3) # [N, L, H, C]
35
- return out
36
-
37
-
38
- @overload
39
- def scaled_dot_product_attention(qkv: torch.Tensor) -> torch.Tensor:
40
- """
41
- Apply scaled dot product attention.
42
-
43
- Args:
44
- qkv (torch.Tensor): A [N, L, 3, H, C] tensor containing Qs, Ks, and Vs.
45
- """
46
- ...
47
-
48
- @overload
49
- def scaled_dot_product_attention(q: torch.Tensor, kv: torch.Tensor) -> torch.Tensor:
50
- """
51
- Apply scaled dot product attention.
52
-
53
- Args:
54
- q (torch.Tensor): A [N, L, H, C] tensor containing Qs.
55
- kv (torch.Tensor): A [N, L, 2, H, C] tensor containing Ks and Vs.
56
- """
57
- ...
58
-
59
- @overload
60
- def scaled_dot_product_attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor:
61
- """
62
- Apply scaled dot product attention.
63
-
64
- Args:
65
- q (torch.Tensor): A [N, L, H, Ci] tensor containing Qs.
66
- k (torch.Tensor): A [N, L, H, Ci] tensor containing Ks.
67
- v (torch.Tensor): A [N, L, H, Co] tensor containing Vs.
68
-
69
- Note:
70
- k and v are assumed to have the same coordinate map.
71
- """
72
- ...
73
-
74
- def scaled_dot_product_attention(*args, **kwargs):
75
- arg_names_dict = {
76
- 1: ['qkv'],
77
- 2: ['q', 'kv'],
78
- 3: ['q', 'k', 'v']
79
- }
80
- num_all_args = len(args) + len(kwargs)
81
- assert num_all_args in arg_names_dict, f"Invalid number of arguments, got {num_all_args}, expected 1, 2, or 3"
82
- for key in arg_names_dict[num_all_args][len(args):]:
83
- assert key in kwargs, f"Missing argument {key}"
84
-
85
- if num_all_args == 1:
86
- qkv = args[0] if len(args) > 0 else kwargs['qkv']
87
- assert len(qkv.shape) == 5 and qkv.shape[2] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, L, 3, H, C]"
88
- device = qkv.device
89
-
90
- elif num_all_args == 2:
91
- q = args[0] if len(args) > 0 else kwargs['q']
92
- kv = args[1] if len(args) > 1 else kwargs['kv']
93
- assert q.shape[0] == kv.shape[0], f"Batch size mismatch, got {q.shape[0]} and {kv.shape[0]}"
94
- assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, C]"
95
- assert len(kv.shape) == 5, f"Invalid shape for kv, got {kv.shape}, expected [N, L, 2, H, C]"
96
- device = q.device
97
-
98
- elif num_all_args == 3:
99
- q = args[0] if len(args) > 0 else kwargs['q']
100
- k = args[1] if len(args) > 1 else kwargs['k']
101
- v = args[2] if len(args) > 2 else kwargs['v']
102
- assert q.shape[0] == k.shape[0] == v.shape[0], f"Batch size mismatch, got {q.shape[0]}, {k.shape[0]}, and {v.shape[0]}"
103
- assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, Ci]"
104
- assert len(k.shape) == 4, f"Invalid shape for k, got {k.shape}, expected [N, L, H, Ci]"
105
- assert len(v.shape) == 4, f"Invalid shape for v, got {v.shape}, expected [N, L, H, Co]"
106
- device = q.device
107
-
108
- if BACKEND == 'xformers':
109
- if num_all_args == 1:
110
- q, k, v = qkv.unbind(dim=2)
111
- elif num_all_args == 2:
112
- k, v = kv.unbind(dim=2)
113
- out = xops.memory_efficient_attention(q, k, v)
114
- elif BACKEND == 'flash_attn':
115
- if num_all_args == 1:
116
- out = flash_attn.flash_attn_qkvpacked_func(qkv)
117
- elif num_all_args == 2:
118
- out = flash_attn.flash_attn_kvpacked_func(q, kv)
119
- elif num_all_args == 3:
120
- out = flash_attn.flash_attn_func(q, k, v)
121
- elif BACKEND == 'sdpa':
122
- if num_all_args == 1:
123
- q, k, v = qkv.unbind(dim=2)
124
- elif num_all_args == 2:
125
- k, v = kv.unbind(dim=2)
126
- q = q.permute(0, 2, 1, 3) # [N, H, L, C]
127
- k = k.permute(0, 2, 1, 3) # [N, H, L, C]
128
- v = v.permute(0, 2, 1, 3) # [N, H, L, C]
129
- out = sdpa(q, k, v) # [N, H, L, C]
130
- out = out.permute(0, 2, 1, 3) # [N, L, H, C]
131
- elif BACKEND == 'naive':
132
- if num_all_args == 1:
133
- q, k, v = qkv.unbind(dim=2)
134
- elif num_all_args == 2:
135
- k, v = kv.unbind(dim=2)
136
- out = _naive_sdpa(q, k, v)
137
- else:
138
- raise ValueError(f"Unknown attention module: {BACKEND}")
139
-
140
- return out
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
trellis/modules/attention/modules.py DELETED
@@ -1,146 +0,0 @@
1
- from typing import *
2
- import torch
3
- import torch.nn as nn
4
- import torch.nn.functional as F
5
- from .full_attn import scaled_dot_product_attention
6
-
7
-
8
- class MultiHeadRMSNorm(nn.Module):
9
- def __init__(self, dim: int, heads: int):
10
- super().__init__()
11
- self.scale = dim ** 0.5
12
- self.gamma = nn.Parameter(torch.ones(heads, dim))
13
-
14
- def forward(self, x: torch.Tensor) -> torch.Tensor:
15
- return (F.normalize(x.float(), dim = -1) * self.gamma * self.scale).to(x.dtype)
16
-
17
-
18
- class RotaryPositionEmbedder(nn.Module):
19
- def __init__(self, hidden_size: int, in_channels: int = 3):
20
- super().__init__()
21
- assert hidden_size % 2 == 0, "Hidden size must be divisible by 2"
22
- self.hidden_size = hidden_size
23
- self.in_channels = in_channels
24
- self.freq_dim = hidden_size // in_channels // 2
25
- self.freqs = torch.arange(self.freq_dim, dtype=torch.float32) / self.freq_dim
26
- self.freqs = 1.0 / (10000 ** self.freqs)
27
-
28
- def _get_phases(self, indices: torch.Tensor) -> torch.Tensor:
29
- self.freqs = self.freqs.to(indices.device)
30
- phases = torch.outer(indices, self.freqs)
31
- phases = torch.polar(torch.ones_like(phases), phases)
32
- return phases
33
-
34
- def _rotary_embedding(self, x: torch.Tensor, phases: torch.Tensor) -> torch.Tensor:
35
- x_complex = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
36
- x_rotated = x_complex * phases
37
- x_embed = torch.view_as_real(x_rotated).reshape(*x_rotated.shape[:-1], -1).to(x.dtype)
38
- return x_embed
39
-
40
- def forward(self, q: torch.Tensor, k: torch.Tensor, indices: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor]:
41
- """
42
- Args:
43
- q (sp.SparseTensor): [..., N, D] tensor of queries
44
- k (sp.SparseTensor): [..., N, D] tensor of keys
45
- indices (torch.Tensor): [..., N, C] tensor of spatial positions
46
- """
47
- if indices is None:
48
- indices = torch.arange(q.shape[-2], device=q.device)
49
- if len(q.shape) > 2:
50
- indices = indices.unsqueeze(0).expand(q.shape[:-2] + (-1,))
51
-
52
- phases = self._get_phases(indices.reshape(-1)).reshape(*indices.shape[:-1], -1)
53
- if phases.shape[1] < self.hidden_size // 2:
54
- phases = torch.cat([phases, torch.polar(
55
- torch.ones(*phases.shape[:-1], self.hidden_size // 2 - phases.shape[1], device=phases.device),
56
- torch.zeros(*phases.shape[:-1], self.hidden_size // 2 - phases.shape[1], device=phases.device)
57
- )], dim=-1)
58
- q_embed = self._rotary_embedding(q, phases)
59
- k_embed = self._rotary_embedding(k, phases)
60
- return q_embed, k_embed
61
-
62
-
63
- class MultiHeadAttention(nn.Module):
64
- def __init__(
65
- self,
66
- channels: int,
67
- num_heads: int,
68
- ctx_channels: Optional[int]=None,
69
- type: Literal["self", "cross"] = "self",
70
- attn_mode: Literal["full", "windowed"] = "full",
71
- window_size: Optional[int] = None,
72
- shift_window: Optional[Tuple[int, int, int]] = None,
73
- qkv_bias: bool = True,
74
- use_rope: bool = False,
75
- qk_rms_norm: bool = False,
76
- ):
77
- super().__init__()
78
- assert channels % num_heads == 0
79
- assert type in ["self", "cross"], f"Invalid attention type: {type}"
80
- assert attn_mode in ["full", "windowed"], f"Invalid attention mode: {attn_mode}"
81
- assert type == "self" or attn_mode == "full", "Cross-attention only supports full attention"
82
-
83
- if attn_mode == "windowed":
84
- raise NotImplementedError("Windowed attention is not yet implemented")
85
-
86
- self.channels = channels
87
- self.head_dim = channels // num_heads
88
- self.ctx_channels = ctx_channels if ctx_channels is not None else channels
89
- self.num_heads = num_heads
90
- self._type = type
91
- self.attn_mode = attn_mode
92
- self.window_size = window_size
93
- self.shift_window = shift_window
94
- self.use_rope = use_rope
95
- self.qk_rms_norm = qk_rms_norm
96
-
97
- if self._type == "self":
98
- self.to_qkv = nn.Linear(channels, channels * 3, bias=qkv_bias)
99
- else:
100
- self.to_q = nn.Linear(channels, channels, bias=qkv_bias)
101
- self.to_kv = nn.Linear(self.ctx_channels, channels * 2, bias=qkv_bias)
102
-
103
- if self.qk_rms_norm:
104
- self.q_rms_norm = MultiHeadRMSNorm(self.head_dim, num_heads)
105
- self.k_rms_norm = MultiHeadRMSNorm(self.head_dim, num_heads)
106
-
107
- self.to_out = nn.Linear(channels, channels)
108
-
109
- if use_rope:
110
- self.rope = RotaryPositionEmbedder(channels)
111
-
112
- def forward(self, x: torch.Tensor, context: Optional[torch.Tensor] = None, indices: Optional[torch.Tensor] = None) -> torch.Tensor:
113
- B, L, C = x.shape
114
- if self._type == "self":
115
- qkv = self.to_qkv(x)
116
- qkv = qkv.reshape(B, L, 3, self.num_heads, -1)
117
- if self.use_rope:
118
- q, k, v = qkv.unbind(dim=2)
119
- q, k = self.rope(q, k, indices)
120
- qkv = torch.stack([q, k, v], dim=2)
121
- if self.attn_mode == "full":
122
- if self.qk_rms_norm:
123
- q, k, v = qkv.unbind(dim=2)
124
- q = self.q_rms_norm(q)
125
- k = self.k_rms_norm(k)
126
- h = scaled_dot_product_attention(q, k, v)
127
- else:
128
- h = scaled_dot_product_attention(qkv)
129
- elif self.attn_mode == "windowed":
130
- raise NotImplementedError("Windowed attention is not yet implemented")
131
- else:
132
- Lkv = context.shape[1]
133
- q = self.to_q(x)
134
- kv = self.to_kv(context)
135
- q = q.reshape(B, L, self.num_heads, -1)
136
- kv = kv.reshape(B, Lkv, 2, self.num_heads, -1)
137
- if self.qk_rms_norm:
138
- q = self.q_rms_norm(q)
139
- k, v = kv.unbind(dim=2)
140
- k = self.k_rms_norm(k)
141
- h = scaled_dot_product_attention(q, k, v)
142
- else:
143
- h = scaled_dot_product_attention(q, kv)
144
- h = h.reshape(B, L, -1)
145
- h = self.to_out(h)
146
- return h
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
trellis/modules/norm.py DELETED
@@ -1,25 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
-
4
-
5
- class LayerNorm32(nn.LayerNorm):
6
- def forward(self, x: torch.Tensor) -> torch.Tensor:
7
- return super().forward(x.float()).type(x.dtype)
8
-
9
-
10
- class GroupNorm32(nn.GroupNorm):
11
- """
12
- A GroupNorm layer that converts to float32 before the forward pass.
13
- """
14
- def forward(self, x: torch.Tensor) -> torch.Tensor:
15
- return super().forward(x.float()).type(x.dtype)
16
-
17
-
18
- class ChannelLayerNorm32(LayerNorm32):
19
- def forward(self, x: torch.Tensor) -> torch.Tensor:
20
- DIM = x.dim()
21
- x = x.permute(0, *range(2, DIM), 1).contiguous()
22
- x = super().forward(x)
23
- x = x.permute(0, DIM-1, *range(1, DIM-1)).contiguous()
24
- return x
25
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
trellis/modules/sparse/__init__.py DELETED
@@ -1,102 +0,0 @@
1
- from typing import *
2
-
3
- BACKEND = 'spconv'
4
- DEBUG = False
5
- ATTN = 'flash_attn'
6
-
7
- def __from_env():
8
- import os
9
-
10
- global BACKEND
11
- global DEBUG
12
- global ATTN
13
-
14
- env_sparse_backend = os.environ.get('SPARSE_BACKEND')
15
- env_sparse_debug = os.environ.get('SPARSE_DEBUG')
16
- env_sparse_attn = os.environ.get('SPARSE_ATTN_BACKEND')
17
- if env_sparse_attn is None:
18
- env_sparse_attn = os.environ.get('ATTN_BACKEND')
19
-
20
- if env_sparse_backend is not None and env_sparse_backend in ['spconv', 'torchsparse']:
21
- BACKEND = env_sparse_backend
22
- if env_sparse_debug is not None:
23
- DEBUG = env_sparse_debug == '1'
24
- if env_sparse_attn is not None and env_sparse_attn in ['xformers', 'flash_attn']:
25
- ATTN = env_sparse_attn
26
-
27
- print(f"[SPARSE] Backend: {BACKEND}, Attention: {ATTN}")
28
-
29
-
30
- __from_env()
31
-
32
-
33
- def set_backend(backend: Literal['spconv', 'torchsparse']):
34
- global BACKEND
35
- BACKEND = backend
36
-
37
- def set_debug(debug: bool):
38
- global DEBUG
39
- DEBUG = debug
40
-
41
- def set_attn(attn: Literal['xformers', 'flash_attn']):
42
- global ATTN
43
- ATTN = attn
44
-
45
-
46
- import importlib
47
-
48
- __attributes = {
49
- 'SparseTensor': 'basic',
50
- 'sparse_batch_broadcast': 'basic',
51
- 'sparse_batch_op': 'basic',
52
- 'sparse_cat': 'basic',
53
- 'sparse_unbind': 'basic',
54
- 'SparseGroupNorm': 'norm',
55
- 'SparseLayerNorm': 'norm',
56
- 'SparseGroupNorm32': 'norm',
57
- 'SparseLayerNorm32': 'norm',
58
- 'SparseReLU': 'nonlinearity',
59
- 'SparseSiLU': 'nonlinearity',
60
- 'SparseGELU': 'nonlinearity',
61
- 'SparseActivation': 'nonlinearity',
62
- 'SparseLinear': 'linear',
63
- 'sparse_scaled_dot_product_attention': 'attention',
64
- 'SerializeMode': 'attention',
65
- 'sparse_serialized_scaled_dot_product_self_attention': 'attention',
66
- 'sparse_windowed_scaled_dot_product_self_attention': 'attention',
67
- 'SparseMultiHeadAttention': 'attention',
68
- 'SparseConv3d': 'conv',
69
- 'SparseInverseConv3d': 'conv',
70
- 'SparseDownsample': 'spatial',
71
- 'SparseUpsample': 'spatial',
72
- 'SparseSubdivide' : 'spatial'
73
- }
74
-
75
- __submodules = ['transformer']
76
-
77
- __all__ = list(__attributes.keys()) + __submodules
78
-
79
- def __getattr__(name):
80
- if name not in globals():
81
- if name in __attributes:
82
- module_name = __attributes[name]
83
- module = importlib.import_module(f".{module_name}", __name__)
84
- globals()[name] = getattr(module, name)
85
- elif name in __submodules:
86
- module = importlib.import_module(f".{name}", __name__)
87
- globals()[name] = module
88
- else:
89
- raise AttributeError(f"module {__name__} has no attribute {name}")
90
- return globals()[name]
91
-
92
-
93
- # For Pylance
94
- if __name__ == '__main__':
95
- from .basic import *
96
- from .norm import *
97
- from .nonlinearity import *
98
- from .linear import *
99
- from .attention import *
100
- from .conv import *
101
- from .spatial import *
102
- import transformer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
trellis/modules/sparse/attention/__init__.py DELETED
@@ -1,4 +0,0 @@
1
- from .full_attn import *
2
- from .serialized_attn import *
3
- from .windowed_attn import *
4
- from .modules import *
 
 
 
 
 
trellis/modules/sparse/attention/full_attn.py DELETED
@@ -1,215 +0,0 @@
1
- from typing import *
2
- import torch
3
- from .. import SparseTensor
4
- from .. import DEBUG, ATTN
5
-
6
- if ATTN == 'xformers':
7
- import xformers.ops as xops
8
- elif ATTN == 'flash_attn':
9
- import flash_attn
10
- else:
11
- raise ValueError(f"Unknown attention module: {ATTN}")
12
-
13
-
14
- __all__ = [
15
- 'sparse_scaled_dot_product_attention',
16
- ]
17
-
18
-
19
- @overload
20
- def sparse_scaled_dot_product_attention(qkv: SparseTensor) -> SparseTensor:
21
- """
22
- Apply scaled dot product attention to a sparse tensor.
23
-
24
- Args:
25
- qkv (SparseTensor): A [N, *, 3, H, C] sparse tensor containing Qs, Ks, and Vs.
26
- """
27
- ...
28
-
29
- @overload
30
- def sparse_scaled_dot_product_attention(q: SparseTensor, kv: Union[SparseTensor, torch.Tensor]) -> SparseTensor:
31
- """
32
- Apply scaled dot product attention to a sparse tensor.
33
-
34
- Args:
35
- q (SparseTensor): A [N, *, H, C] sparse tensor containing Qs.
36
- kv (SparseTensor or torch.Tensor): A [N, *, 2, H, C] sparse tensor or a [N, L, 2, H, C] dense tensor containing Ks and Vs.
37
- """
38
- ...
39
-
40
- @overload
41
- def sparse_scaled_dot_product_attention(q: torch.Tensor, kv: SparseTensor) -> torch.Tensor:
42
- """
43
- Apply scaled dot product attention to a sparse tensor.
44
-
45
- Args:
46
- q (SparseTensor): A [N, L, H, C] dense tensor containing Qs.
47
- kv (SparseTensor or torch.Tensor): A [N, *, 2, H, C] sparse tensor containing Ks and Vs.
48
- """
49
- ...
50
-
51
- @overload
52
- def sparse_scaled_dot_product_attention(q: SparseTensor, k: SparseTensor, v: SparseTensor) -> SparseTensor:
53
- """
54
- Apply scaled dot product attention to a sparse tensor.
55
-
56
- Args:
57
- q (SparseTensor): A [N, *, H, Ci] sparse tensor containing Qs.
58
- k (SparseTensor): A [N, *, H, Ci] sparse tensor containing Ks.
59
- v (SparseTensor): A [N, *, H, Co] sparse tensor containing Vs.
60
-
61
- Note:
62
- k and v are assumed to have the same coordinate map.
63
- """
64
- ...
65
-
66
- @overload
67
- def sparse_scaled_dot_product_attention(q: SparseTensor, k: torch.Tensor, v: torch.Tensor) -> SparseTensor:
68
- """
69
- Apply scaled dot product attention to a sparse tensor.
70
-
71
- Args:
72
- q (SparseTensor): A [N, *, H, Ci] sparse tensor containing Qs.
73
- k (torch.Tensor): A [N, L, H, Ci] dense tensor containing Ks.
74
- v (torch.Tensor): A [N, L, H, Co] dense tensor containing Vs.
75
- """
76
- ...
77
-
78
- @overload
79
- def sparse_scaled_dot_product_attention(q: torch.Tensor, k: SparseTensor, v: SparseTensor) -> torch.Tensor:
80
- """
81
- Apply scaled dot product attention to a sparse tensor.
82
-
83
- Args:
84
- q (torch.Tensor): A [N, L, H, Ci] dense tensor containing Qs.
85
- k (SparseTensor): A [N, *, H, Ci] sparse tensor containing Ks.
86
- v (SparseTensor): A [N, *, H, Co] sparse tensor containing Vs.
87
- """
88
- ...
89
-
90
- def sparse_scaled_dot_product_attention(*args, **kwargs):
91
- arg_names_dict = {
92
- 1: ['qkv'],
93
- 2: ['q', 'kv'],
94
- 3: ['q', 'k', 'v']
95
- }
96
- num_all_args = len(args) + len(kwargs)
97
- assert num_all_args in arg_names_dict, f"Invalid number of arguments, got {num_all_args}, expected 1, 2, or 3"
98
- for key in arg_names_dict[num_all_args][len(args):]:
99
- assert key in kwargs, f"Missing argument {key}"
100
-
101
- if num_all_args == 1:
102
- qkv = args[0] if len(args) > 0 else kwargs['qkv']
103
- assert isinstance(qkv, SparseTensor), f"qkv must be a SparseTensor, got {type(qkv)}"
104
- assert len(qkv.shape) == 4 and qkv.shape[1] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, *, 3, H, C]"
105
- device = qkv.device
106
-
107
- s = qkv
108
- q_seqlen = [qkv.layout[i].stop - qkv.layout[i].start for i in range(qkv.shape[0])]
109
- kv_seqlen = q_seqlen
110
- qkv = qkv.feats # [T, 3, H, C]
111
-
112
- elif num_all_args == 2:
113
- q = args[0] if len(args) > 0 else kwargs['q']
114
- kv = args[1] if len(args) > 1 else kwargs['kv']
115
- assert isinstance(q, SparseTensor) and isinstance(kv, (SparseTensor, torch.Tensor)) or \
116
- isinstance(q, torch.Tensor) and isinstance(kv, SparseTensor), \
117
- f"Invalid types, got {type(q)} and {type(kv)}"
118
- assert q.shape[0] == kv.shape[0], f"Batch size mismatch, got {q.shape[0]} and {kv.shape[0]}"
119
- device = q.device
120
-
121
- if isinstance(q, SparseTensor):
122
- assert len(q.shape) == 3, f"Invalid shape for q, got {q.shape}, expected [N, *, H, C]"
123
- s = q
124
- q_seqlen = [q.layout[i].stop - q.layout[i].start for i in range(q.shape[0])]
125
- q = q.feats # [T_Q, H, C]
126
- else:
127
- assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, C]"
128
- s = None
129
- N, L, H, C = q.shape
130
- q_seqlen = [L] * N
131
- q = q.reshape(N * L, H, C) # [T_Q, H, C]
132
-
133
- if isinstance(kv, SparseTensor):
134
- assert len(kv.shape) == 4 and kv.shape[1] == 2, f"Invalid shape for kv, got {kv.shape}, expected [N, *, 2, H, C]"
135
- kv_seqlen = [kv.layout[i].stop - kv.layout[i].start for i in range(kv.shape[0])]
136
- kv = kv.feats # [T_KV, 2, H, C]
137
- else:
138
- assert len(kv.shape) == 5, f"Invalid shape for kv, got {kv.shape}, expected [N, L, 2, H, C]"
139
- N, L, _, H, C = kv.shape
140
- kv_seqlen = [L] * N
141
- kv = kv.reshape(N * L, 2, H, C) # [T_KV, 2, H, C]
142
-
143
- elif num_all_args == 3:
144
- q = args[0] if len(args) > 0 else kwargs['q']
145
- k = args[1] if len(args) > 1 else kwargs['k']
146
- v = args[2] if len(args) > 2 else kwargs['v']
147
- assert isinstance(q, SparseTensor) and isinstance(k, (SparseTensor, torch.Tensor)) and type(k) == type(v) or \
148
- isinstance(q, torch.Tensor) and isinstance(k, SparseTensor) and isinstance(v, SparseTensor), \
149
- f"Invalid types, got {type(q)}, {type(k)}, and {type(v)}"
150
- assert q.shape[0] == k.shape[0] == v.shape[0], f"Batch size mismatch, got {q.shape[0]}, {k.shape[0]}, and {v.shape[0]}"
151
- device = q.device
152
-
153
- if isinstance(q, SparseTensor):
154
- assert len(q.shape) == 3, f"Invalid shape for q, got {q.shape}, expected [N, *, H, Ci]"
155
- s = q
156
- q_seqlen = [q.layout[i].stop - q.layout[i].start for i in range(q.shape[0])]
157
- q = q.feats # [T_Q, H, Ci]
158
- else:
159
- assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, Ci]"
160
- s = None
161
- N, L, H, CI = q.shape
162
- q_seqlen = [L] * N
163
- q = q.reshape(N * L, H, CI) # [T_Q, H, Ci]
164
-
165
- if isinstance(k, SparseTensor):
166
- assert len(k.shape) == 3, f"Invalid shape for k, got {k.shape}, expected [N, *, H, Ci]"
167
- assert len(v.shape) == 3, f"Invalid shape for v, got {v.shape}, expected [N, *, H, Co]"
168
- kv_seqlen = [k.layout[i].stop - k.layout[i].start for i in range(k.shape[0])]
169
- k = k.feats # [T_KV, H, Ci]
170
- v = v.feats # [T_KV, H, Co]
171
- else:
172
- assert len(k.shape) == 4, f"Invalid shape for k, got {k.shape}, expected [N, L, H, Ci]"
173
- assert len(v.shape) == 4, f"Invalid shape for v, got {v.shape}, expected [N, L, H, Co]"
174
- N, L, H, CI, CO = *k.shape, v.shape[-1]
175
- kv_seqlen = [L] * N
176
- k = k.reshape(N * L, H, CI) # [T_KV, H, Ci]
177
- v = v.reshape(N * L, H, CO) # [T_KV, H, Co]
178
-
179
- if DEBUG:
180
- if s is not None:
181
- for i in range(s.shape[0]):
182
- assert (s.coords[s.layout[i]] == i).all(), f"SparseScaledDotProductSelfAttention: batch index mismatch"
183
- if num_all_args in [2, 3]:
184
- assert q.shape[:2] == [1, sum(q_seqlen)], f"SparseScaledDotProductSelfAttention: q shape mismatch"
185
- if num_all_args == 3:
186
- assert k.shape[:2] == [1, sum(kv_seqlen)], f"SparseScaledDotProductSelfAttention: k shape mismatch"
187
- assert v.shape[:2] == [1, sum(kv_seqlen)], f"SparseScaledDotProductSelfAttention: v shape mismatch"
188
-
189
- if ATTN == 'xformers':
190
- if num_all_args == 1:
191
- q, k, v = qkv.unbind(dim=1)
192
- elif num_all_args == 2:
193
- k, v = kv.unbind(dim=1)
194
- q = q.unsqueeze(0)
195
- k = k.unsqueeze(0)
196
- v = v.unsqueeze(0)
197
- mask = xops.fmha.BlockDiagonalMask.from_seqlens(q_seqlen, kv_seqlen)
198
- out = xops.memory_efficient_attention(q, k, v, mask)[0]
199
- elif ATTN == 'flash_attn':
200
- cu_seqlens_q = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(q_seqlen), dim=0)]).int().to(device)
201
- if num_all_args in [2, 3]:
202
- cu_seqlens_kv = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(kv_seqlen), dim=0)]).int().to(device)
203
- if num_all_args == 1:
204
- out = flash_attn.flash_attn_varlen_qkvpacked_func(qkv, cu_seqlens_q, max(q_seqlen))
205
- elif num_all_args == 2:
206
- out = flash_attn.flash_attn_varlen_kvpacked_func(q, kv, cu_seqlens_q, cu_seqlens_kv, max(q_seqlen), max(kv_seqlen))
207
- elif num_all_args == 3:
208
- out = flash_attn.flash_attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max(q_seqlen), max(kv_seqlen))
209
- else:
210
- raise ValueError(f"Unknown attention module: {ATTN}")
211
-
212
- if s is not None:
213
- return s.replace(out)
214
- else:
215
- return out.reshape(N, L, H, -1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
trellis/modules/sparse/attention/modules.py DELETED
@@ -1,139 +0,0 @@
1
- from typing import *
2
- import torch
3
- import torch.nn as nn
4
- import torch.nn.functional as F
5
- from .. import SparseTensor
6
- from .full_attn import sparse_scaled_dot_product_attention
7
- from .serialized_attn import SerializeMode, sparse_serialized_scaled_dot_product_self_attention
8
- from .windowed_attn import sparse_windowed_scaled_dot_product_self_attention
9
- from ...attention import RotaryPositionEmbedder
10
-
11
-
12
- class SparseMultiHeadRMSNorm(nn.Module):
13
- def __init__(self, dim: int, heads: int):
14
- super().__init__()
15
- self.scale = dim ** 0.5
16
- self.gamma = nn.Parameter(torch.ones(heads, dim))
17
-
18
- def forward(self, x: Union[SparseTensor, torch.Tensor]) -> Union[SparseTensor, torch.Tensor]:
19
- x_type = x.dtype
20
- x = x.float()
21
- if isinstance(x, SparseTensor):
22
- x = x.replace(F.normalize(x.feats, dim=-1))
23
- else:
24
- x = F.normalize(x, dim=-1)
25
- return (x * self.gamma * self.scale).to(x_type)
26
-
27
-
28
- class SparseMultiHeadAttention(nn.Module):
29
- def __init__(
30
- self,
31
- channels: int,
32
- num_heads: int,
33
- ctx_channels: Optional[int] = None,
34
- type: Literal["self", "cross"] = "self",
35
- attn_mode: Literal["full", "serialized", "windowed"] = "full",
36
- window_size: Optional[int] = None,
37
- shift_sequence: Optional[int] = None,
38
- shift_window: Optional[Tuple[int, int, int]] = None,
39
- serialize_mode: Optional[SerializeMode] = None,
40
- qkv_bias: bool = True,
41
- use_rope: bool = False,
42
- qk_rms_norm: bool = False,
43
- ):
44
- super().__init__()
45
- assert channels % num_heads == 0
46
- assert type in ["self", "cross"], f"Invalid attention type: {type}"
47
- assert attn_mode in ["full", "serialized", "windowed"], f"Invalid attention mode: {attn_mode}"
48
- assert type == "self" or attn_mode == "full", "Cross-attention only supports full attention"
49
- assert type == "self" or use_rope is False, "Rotary position embeddings only supported for self-attention"
50
- self.channels = channels
51
- self.ctx_channels = ctx_channels if ctx_channels is not None else channels
52
- self.num_heads = num_heads
53
- self._type = type
54
- self.attn_mode = attn_mode
55
- self.window_size = window_size
56
- self.shift_sequence = shift_sequence
57
- self.shift_window = shift_window
58
- self.serialize_mode = serialize_mode
59
- self.use_rope = use_rope
60
- self.qk_rms_norm = qk_rms_norm
61
-
62
- if self._type == "self":
63
- self.to_qkv = nn.Linear(channels, channels * 3, bias=qkv_bias)
64
- else:
65
- self.to_q = nn.Linear(channels, channels, bias=qkv_bias)
66
- self.to_kv = nn.Linear(self.ctx_channels, channels * 2, bias=qkv_bias)
67
-
68
- if self.qk_rms_norm:
69
- self.q_rms_norm = SparseMultiHeadRMSNorm(channels // num_heads, num_heads)
70
- self.k_rms_norm = SparseMultiHeadRMSNorm(channels // num_heads, num_heads)
71
-
72
- self.to_out = nn.Linear(channels, channels)
73
-
74
- if use_rope:
75
- self.rope = RotaryPositionEmbedder(channels)
76
-
77
- @staticmethod
78
- def _linear(module: nn.Linear, x: Union[SparseTensor, torch.Tensor]) -> Union[SparseTensor, torch.Tensor]:
79
- if isinstance(x, SparseTensor):
80
- return x.replace(module(x.feats))
81
- else:
82
- return module(x)
83
-
84
- @staticmethod
85
- def _reshape_chs(x: Union[SparseTensor, torch.Tensor], shape: Tuple[int, ...]) -> Union[SparseTensor, torch.Tensor]:
86
- if isinstance(x, SparseTensor):
87
- return x.reshape(*shape)
88
- else:
89
- return x.reshape(*x.shape[:2], *shape)
90
-
91
- def _fused_pre(self, x: Union[SparseTensor, torch.Tensor], num_fused: int) -> Union[SparseTensor, torch.Tensor]:
92
- if isinstance(x, SparseTensor):
93
- x_feats = x.feats.unsqueeze(0)
94
- else:
95
- x_feats = x
96
- x_feats = x_feats.reshape(*x_feats.shape[:2], num_fused, self.num_heads, -1)
97
- return x.replace(x_feats.squeeze(0)) if isinstance(x, SparseTensor) else x_feats
98
-
99
- def _rope(self, qkv: SparseTensor) -> SparseTensor:
100
- q, k, v = qkv.feats.unbind(dim=1) # [T, H, C]
101
- q, k = self.rope(q, k, qkv.coords[:, 1:])
102
- qkv = qkv.replace(torch.stack([q, k, v], dim=1))
103
- return qkv
104
-
105
- def forward(self, x: Union[SparseTensor, torch.Tensor], context: Optional[Union[SparseTensor, torch.Tensor]] = None) -> Union[SparseTensor, torch.Tensor]:
106
- if self._type == "self":
107
- qkv = self._linear(self.to_qkv, x)
108
- qkv = self._fused_pre(qkv, num_fused=3)
109
- if self.use_rope:
110
- qkv = self._rope(qkv)
111
- if self.qk_rms_norm:
112
- q, k, v = qkv.unbind(dim=1)
113
- q = self.q_rms_norm(q)
114
- k = self.k_rms_norm(k)
115
- qkv = qkv.replace(torch.stack([q.feats, k.feats, v.feats], dim=1))
116
- if self.attn_mode == "full":
117
- h = sparse_scaled_dot_product_attention(qkv)
118
- elif self.attn_mode == "serialized":
119
- h = sparse_serialized_scaled_dot_product_self_attention(
120
- qkv, self.window_size, serialize_mode=self.serialize_mode, shift_sequence=self.shift_sequence, shift_window=self.shift_window
121
- )
122
- elif self.attn_mode == "windowed":
123
- h = sparse_windowed_scaled_dot_product_self_attention(
124
- qkv, self.window_size, shift_window=self.shift_window
125
- )
126
- else:
127
- q = self._linear(self.to_q, x)
128
- q = self._reshape_chs(q, (self.num_heads, -1))
129
- kv = self._linear(self.to_kv, context)
130
- kv = self._fused_pre(kv, num_fused=2)
131
- if self.qk_rms_norm:
132
- q = self.q_rms_norm(q)
133
- k, v = kv.unbind(dim=1)
134
- k = self.k_rms_norm(k)
135
- kv = kv.replace(torch.stack([k.feats, v.feats], dim=1))
136
- h = sparse_scaled_dot_product_attention(q, kv)
137
- h = self._reshape_chs(h, (-1,))
138
- h = self._linear(self.to_out, h)
139
- return h
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
trellis/modules/sparse/attention/serialized_attn.py DELETED
@@ -1,193 +0,0 @@
1
- from typing import *
2
- from enum import Enum
3
- import torch
4
- import math
5
- from .. import SparseTensor
6
- from .. import DEBUG, ATTN
7
-
8
- if ATTN == 'xformers':
9
- import xformers.ops as xops
10
- elif ATTN == 'flash_attn':
11
- import flash_attn
12
- else:
13
- raise ValueError(f"Unknown attention module: {ATTN}")
14
-
15
-
16
- __all__ = [
17
- 'sparse_serialized_scaled_dot_product_self_attention',
18
- ]
19
-
20
-
21
- class SerializeMode(Enum):
22
- Z_ORDER = 0
23
- Z_ORDER_TRANSPOSED = 1
24
- HILBERT = 2
25
- HILBERT_TRANSPOSED = 3
26
-
27
-
28
- SerializeModes = [
29
- SerializeMode.Z_ORDER,
30
- SerializeMode.Z_ORDER_TRANSPOSED,
31
- SerializeMode.HILBERT,
32
- SerializeMode.HILBERT_TRANSPOSED
33
- ]
34
-
35
-
36
- def calc_serialization(
37
- tensor: SparseTensor,
38
- window_size: int,
39
- serialize_mode: SerializeMode = SerializeMode.Z_ORDER,
40
- shift_sequence: int = 0,
41
- shift_window: Tuple[int, int, int] = (0, 0, 0)
42
- ) -> Tuple[torch.Tensor, torch.Tensor, List[int]]:
43
- """
44
- Calculate serialization and partitioning for a set of coordinates.
45
-
46
- Args:
47
- tensor (SparseTensor): The input tensor.
48
- window_size (int): The window size to use.
49
- serialize_mode (SerializeMode): The serialization mode to use.
50
- shift_sequence (int): The shift of serialized sequence.
51
- shift_window (Tuple[int, int, int]): The shift of serialized coordinates.
52
-
53
- Returns:
54
- (torch.Tensor, torch.Tensor): Forwards and backwards indices.
55
- """
56
- fwd_indices = []
57
- bwd_indices = []
58
- seq_lens = []
59
- seq_batch_indices = []
60
- offsets = [0]
61
-
62
- if 'vox2seq' not in globals():
63
- import vox2seq
64
-
65
- # Serialize the input
66
- serialize_coords = tensor.coords[:, 1:].clone()
67
- serialize_coords += torch.tensor(shift_window, dtype=torch.int32, device=tensor.device).reshape(1, 3)
68
- if serialize_mode == SerializeMode.Z_ORDER:
69
- code = vox2seq.encode(serialize_coords, mode='z_order', permute=[0, 1, 2])
70
- elif serialize_mode == SerializeMode.Z_ORDER_TRANSPOSED:
71
- code = vox2seq.encode(serialize_coords, mode='z_order', permute=[1, 0, 2])
72
- elif serialize_mode == SerializeMode.HILBERT:
73
- code = vox2seq.encode(serialize_coords, mode='hilbert', permute=[0, 1, 2])
74
- elif serialize_mode == SerializeMode.HILBERT_TRANSPOSED:
75
- code = vox2seq.encode(serialize_coords, mode='hilbert', permute=[1, 0, 2])
76
- else:
77
- raise ValueError(f"Unknown serialize mode: {serialize_mode}")
78
-
79
- for bi, s in enumerate(tensor.layout):
80
- num_points = s.stop - s.start
81
- num_windows = (num_points + window_size - 1) // window_size
82
- valid_window_size = num_points / num_windows
83
- to_ordered = torch.argsort(code[s.start:s.stop])
84
- if num_windows == 1:
85
- fwd_indices.append(to_ordered)
86
- bwd_indices.append(torch.zeros_like(to_ordered).scatter_(0, to_ordered, torch.arange(num_points, device=tensor.device)))
87
- fwd_indices[-1] += s.start
88
- bwd_indices[-1] += offsets[-1]
89
- seq_lens.append(num_points)
90
- seq_batch_indices.append(bi)
91
- offsets.append(offsets[-1] + seq_lens[-1])
92
- else:
93
- # Partition the input
94
- offset = 0
95
- mids = [(i + 0.5) * valid_window_size + shift_sequence for i in range(num_windows)]
96
- split = [math.floor(i * valid_window_size + shift_sequence) for i in range(num_windows + 1)]
97
- bwd_index = torch.zeros((num_points,), dtype=torch.int64, device=tensor.device)
98
- for i in range(num_windows):
99
- mid = mids[i]
100
- valid_start = split[i]
101
- valid_end = split[i + 1]
102
- padded_start = math.floor(mid - 0.5 * window_size)
103
- padded_end = padded_start + window_size
104
- fwd_indices.append(to_ordered[torch.arange(padded_start, padded_end, device=tensor.device) % num_points])
105
- offset += valid_start - padded_start
106
- bwd_index.scatter_(0, fwd_indices[-1][valid_start-padded_start:valid_end-padded_start], torch.arange(offset, offset + valid_end - valid_start, device=tensor.device))
107
- offset += padded_end - valid_start
108
- fwd_indices[-1] += s.start
109
- seq_lens.extend([window_size] * num_windows)
110
- seq_batch_indices.extend([bi] * num_windows)
111
- bwd_indices.append(bwd_index + offsets[-1])
112
- offsets.append(offsets[-1] + num_windows * window_size)
113
-
114
- fwd_indices = torch.cat(fwd_indices)
115
- bwd_indices = torch.cat(bwd_indices)
116
-
117
- return fwd_indices, bwd_indices, seq_lens, seq_batch_indices
118
-
119
-
120
- def sparse_serialized_scaled_dot_product_self_attention(
121
- qkv: SparseTensor,
122
- window_size: int,
123
- serialize_mode: SerializeMode = SerializeMode.Z_ORDER,
124
- shift_sequence: int = 0,
125
- shift_window: Tuple[int, int, int] = (0, 0, 0)
126
- ) -> SparseTensor:
127
- """
128
- Apply serialized scaled dot product self attention to a sparse tensor.
129
-
130
- Args:
131
- qkv (SparseTensor): [N, *, 3, H, C] sparse tensor containing Qs, Ks, and Vs.
132
- window_size (int): The window size to use.
133
- serialize_mode (SerializeMode): The serialization mode to use.
134
- shift_sequence (int): The shift of serialized sequence.
135
- shift_window (Tuple[int, int, int]): The shift of serialized coordinates.
136
- shift (int): The shift to use.
137
- """
138
- assert len(qkv.shape) == 4 and qkv.shape[1] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, *, 3, H, C]"
139
-
140
- serialization_spatial_cache_name = f'serialization_{serialize_mode}_{window_size}_{shift_sequence}_{shift_window}'
141
- serialization_spatial_cache = qkv.get_spatial_cache(serialization_spatial_cache_name)
142
- if serialization_spatial_cache is None:
143
- fwd_indices, bwd_indices, seq_lens, seq_batch_indices = calc_serialization(qkv, window_size, serialize_mode, shift_sequence, shift_window)
144
- qkv.register_spatial_cache(serialization_spatial_cache_name, (fwd_indices, bwd_indices, seq_lens, seq_batch_indices))
145
- else:
146
- fwd_indices, bwd_indices, seq_lens, seq_batch_indices = serialization_spatial_cache
147
-
148
- M = fwd_indices.shape[0]
149
- T = qkv.feats.shape[0]
150
- H = qkv.feats.shape[2]
151
- C = qkv.feats.shape[3]
152
-
153
- qkv_feats = qkv.feats[fwd_indices] # [M, 3, H, C]
154
-
155
- if DEBUG:
156
- start = 0
157
- qkv_coords = qkv.coords[fwd_indices]
158
- for i in range(len(seq_lens)):
159
- assert (qkv_coords[start:start+seq_lens[i], 0] == seq_batch_indices[i]).all(), f"SparseWindowedScaledDotProductSelfAttention: batch index mismatch"
160
- start += seq_lens[i]
161
-
162
- if all([seq_len == window_size for seq_len in seq_lens]):
163
- B = len(seq_lens)
164
- N = window_size
165
- qkv_feats = qkv_feats.reshape(B, N, 3, H, C)
166
- if ATTN == 'xformers':
167
- q, k, v = qkv_feats.unbind(dim=2) # [B, N, H, C]
168
- out = xops.memory_efficient_attention(q, k, v) # [B, N, H, C]
169
- elif ATTN == 'flash_attn':
170
- out = flash_attn.flash_attn_qkvpacked_func(qkv_feats) # [B, N, H, C]
171
- else:
172
- raise ValueError(f"Unknown attention module: {ATTN}")
173
- out = out.reshape(B * N, H, C) # [M, H, C]
174
- else:
175
- if ATTN == 'xformers':
176
- q, k, v = qkv_feats.unbind(dim=1) # [M, H, C]
177
- q = q.unsqueeze(0) # [1, M, H, C]
178
- k = k.unsqueeze(0) # [1, M, H, C]
179
- v = v.unsqueeze(0) # [1, M, H, C]
180
- mask = xops.fmha.BlockDiagonalMask.from_seqlens(seq_lens)
181
- out = xops.memory_efficient_attention(q, k, v, mask)[0] # [M, H, C]
182
- elif ATTN == 'flash_attn':
183
- cu_seqlens = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(seq_lens), dim=0)], dim=0) \
184
- .to(qkv.device).int()
185
- out = flash_attn.flash_attn_varlen_qkvpacked_func(qkv_feats, cu_seqlens, max(seq_lens)) # [M, H, C]
186
-
187
- out = out[bwd_indices] # [T, H, C]
188
-
189
- if DEBUG:
190
- qkv_coords = qkv_coords[bwd_indices]
191
- assert torch.equal(qkv_coords, qkv.coords), "SparseWindowedScaledDotProductSelfAttention: coordinate mismatch"
192
-
193
- return qkv.replace(out)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
trellis/modules/sparse/attention/windowed_attn.py DELETED
@@ -1,135 +0,0 @@
1
- from typing import *
2
- import torch
3
- import math
4
- from .. import SparseTensor
5
- from .. import DEBUG, ATTN
6
-
7
- if ATTN == 'xformers':
8
- import xformers.ops as xops
9
- elif ATTN == 'flash_attn':
10
- import flash_attn
11
- else:
12
- raise ValueError(f"Unknown attention module: {ATTN}")
13
-
14
-
15
- __all__ = [
16
- 'sparse_windowed_scaled_dot_product_self_attention',
17
- ]
18
-
19
-
20
- def calc_window_partition(
21
- tensor: SparseTensor,
22
- window_size: Union[int, Tuple[int, ...]],
23
- shift_window: Union[int, Tuple[int, ...]] = 0
24
- ) -> Tuple[torch.Tensor, torch.Tensor, List[int], List[int]]:
25
- """
26
- Calculate serialization and partitioning for a set of coordinates.
27
-
28
- Args:
29
- tensor (SparseTensor): The input tensor.
30
- window_size (int): The window size to use.
31
- shift_window (Tuple[int, ...]): The shift of serialized coordinates.
32
-
33
- Returns:
34
- (torch.Tensor): Forwards indices.
35
- (torch.Tensor): Backwards indices.
36
- (List[int]): Sequence lengths.
37
- (List[int]): Sequence batch indices.
38
- """
39
- DIM = tensor.coords.shape[1] - 1
40
- shift_window = (shift_window,) * DIM if isinstance(shift_window, int) else shift_window
41
- window_size = (window_size,) * DIM if isinstance(window_size, int) else window_size
42
- shifted_coords = tensor.coords.clone().detach()
43
- shifted_coords[:, 1:] += torch.tensor(shift_window, device=tensor.device, dtype=torch.int32).unsqueeze(0)
44
-
45
- MAX_COORDS = shifted_coords[:, 1:].max(dim=0).values.tolist()
46
- NUM_WINDOWS = [math.ceil((mc + 1) / ws) for mc, ws in zip(MAX_COORDS, window_size)]
47
- OFFSET = torch.cumprod(torch.tensor([1] + NUM_WINDOWS[::-1]), dim=0).tolist()[::-1]
48
-
49
- shifted_coords[:, 1:] //= torch.tensor(window_size, device=tensor.device, dtype=torch.int32).unsqueeze(0)
50
- shifted_indices = (shifted_coords * torch.tensor(OFFSET, device=tensor.device, dtype=torch.int32).unsqueeze(0)).sum(dim=1)
51
- fwd_indices = torch.argsort(shifted_indices)
52
- bwd_indices = torch.empty_like(fwd_indices)
53
- bwd_indices[fwd_indices] = torch.arange(fwd_indices.shape[0], device=tensor.device)
54
- seq_lens = torch.bincount(shifted_indices)
55
- seq_batch_indices = torch.arange(seq_lens.shape[0], device=tensor.device, dtype=torch.int32) // OFFSET[0]
56
- mask = seq_lens != 0
57
- seq_lens = seq_lens[mask].tolist()
58
- seq_batch_indices = seq_batch_indices[mask].tolist()
59
-
60
- return fwd_indices, bwd_indices, seq_lens, seq_batch_indices
61
-
62
-
63
- def sparse_windowed_scaled_dot_product_self_attention(
64
- qkv: SparseTensor,
65
- window_size: int,
66
- shift_window: Tuple[int, int, int] = (0, 0, 0)
67
- ) -> SparseTensor:
68
- """
69
- Apply windowed scaled dot product self attention to a sparse tensor.
70
-
71
- Args:
72
- qkv (SparseTensor): [N, *, 3, H, C] sparse tensor containing Qs, Ks, and Vs.
73
- window_size (int): The window size to use.
74
- shift_window (Tuple[int, int, int]): The shift of serialized coordinates.
75
- shift (int): The shift to use.
76
- """
77
- assert len(qkv.shape) == 4 and qkv.shape[1] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, *, 3, H, C]"
78
-
79
- serialization_spatial_cache_name = f'window_partition_{window_size}_{shift_window}'
80
- serialization_spatial_cache = qkv.get_spatial_cache(serialization_spatial_cache_name)
81
- if serialization_spatial_cache is None:
82
- fwd_indices, bwd_indices, seq_lens, seq_batch_indices = calc_window_partition(qkv, window_size, shift_window)
83
- qkv.register_spatial_cache(serialization_spatial_cache_name, (fwd_indices, bwd_indices, seq_lens, seq_batch_indices))
84
- else:
85
- fwd_indices, bwd_indices, seq_lens, seq_batch_indices = serialization_spatial_cache
86
-
87
- M = fwd_indices.shape[0]
88
- T = qkv.feats.shape[0]
89
- H = qkv.feats.shape[2]
90
- C = qkv.feats.shape[3]
91
-
92
- qkv_feats = qkv.feats[fwd_indices] # [M, 3, H, C]
93
-
94
- if DEBUG:
95
- start = 0
96
- qkv_coords = qkv.coords[fwd_indices]
97
- for i in range(len(seq_lens)):
98
- seq_coords = qkv_coords[start:start+seq_lens[i]]
99
- assert (seq_coords[:, 0] == seq_batch_indices[i]).all(), f"SparseWindowedScaledDotProductSelfAttention: batch index mismatch"
100
- assert (seq_coords[:, 1:].max(dim=0).values - seq_coords[:, 1:].min(dim=0).values < window_size).all(), \
101
- f"SparseWindowedScaledDotProductSelfAttention: window size exceeded"
102
- start += seq_lens[i]
103
-
104
- if all([seq_len == window_size for seq_len in seq_lens]):
105
- B = len(seq_lens)
106
- N = window_size
107
- qkv_feats = qkv_feats.reshape(B, N, 3, H, C)
108
- if ATTN == 'xformers':
109
- q, k, v = qkv_feats.unbind(dim=2) # [B, N, H, C]
110
- out = xops.memory_efficient_attention(q, k, v) # [B, N, H, C]
111
- elif ATTN == 'flash_attn':
112
- out = flash_attn.flash_attn_qkvpacked_func(qkv_feats) # [B, N, H, C]
113
- else:
114
- raise ValueError(f"Unknown attention module: {ATTN}")
115
- out = out.reshape(B * N, H, C) # [M, H, C]
116
- else:
117
- if ATTN == 'xformers':
118
- q, k, v = qkv_feats.unbind(dim=1) # [M, H, C]
119
- q = q.unsqueeze(0) # [1, M, H, C]
120
- k = k.unsqueeze(0) # [1, M, H, C]
121
- v = v.unsqueeze(0) # [1, M, H, C]
122
- mask = xops.fmha.BlockDiagonalMask.from_seqlens(seq_lens)
123
- out = xops.memory_efficient_attention(q, k, v, mask)[0] # [M, H, C]
124
- elif ATTN == 'flash_attn':
125
- cu_seqlens = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(seq_lens), dim=0)], dim=0) \
126
- .to(qkv.device).int()
127
- out = flash_attn.flash_attn_varlen_qkvpacked_func(qkv_feats, cu_seqlens, max(seq_lens)) # [M, H, C]
128
-
129
- out = out[bwd_indices] # [T, H, C]
130
-
131
- if DEBUG:
132
- qkv_coords = qkv_coords[bwd_indices]
133
- assert torch.equal(qkv_coords, qkv.coords), "SparseWindowedScaledDotProductSelfAttention: coordinate mismatch"
134
-
135
- return qkv.replace(out)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
trellis/modules/sparse/basic.py DELETED
@@ -1,459 +0,0 @@
1
- from typing import *
2
- import torch
3
- import torch.nn as nn
4
- from . import BACKEND, DEBUG
5
- SparseTensorData = None # Lazy import
6
-
7
-
8
- __all__ = [
9
- 'SparseTensor',
10
- 'sparse_batch_broadcast',
11
- 'sparse_batch_op',
12
- 'sparse_cat',
13
- 'sparse_unbind',
14
- ]
15
-
16
-
17
- class SparseTensor:
18
- """
19
- Sparse tensor with support for both torchsparse and spconv backends.
20
-
21
- Parameters:
22
- - feats (torch.Tensor): Features of the sparse tensor.
23
- - coords (torch.Tensor): Coordinates of the sparse tensor.
24
- - shape (torch.Size): Shape of the sparse tensor.
25
- - layout (List[slice]): Layout of the sparse tensor for each batch
26
- - data (SparseTensorData): Sparse tensor data used for convolusion
27
-
28
- NOTE:
29
- - Data corresponding to a same batch should be contiguous.
30
- - Coords should be in [0, 1023]
31
- """
32
- @overload
33
- def __init__(self, feats: torch.Tensor, coords: torch.Tensor, shape: Optional[torch.Size] = None, layout: Optional[List[slice]] = None, **kwargs): ...
34
-
35
- @overload
36
- def __init__(self, data, shape: Optional[torch.Size] = None, layout: Optional[List[slice]] = None, **kwargs): ...
37
-
38
- def __init__(self, *args, **kwargs):
39
- # Lazy import of sparse tensor backend
40
- global SparseTensorData
41
- if SparseTensorData is None:
42
- import importlib
43
- if BACKEND == 'torchsparse':
44
- SparseTensorData = importlib.import_module('torchsparse').SparseTensor
45
- elif BACKEND == 'spconv':
46
- SparseTensorData = importlib.import_module('spconv.pytorch').SparseConvTensor
47
-
48
- method_id = 0
49
- if len(args) != 0:
50
- method_id = 0 if isinstance(args[0], torch.Tensor) else 1
51
- else:
52
- method_id = 1 if 'data' in kwargs else 0
53
-
54
- if method_id == 0:
55
- feats, coords, shape, layout = args + (None,) * (4 - len(args))
56
- if 'feats' in kwargs:
57
- feats = kwargs['feats']
58
- del kwargs['feats']
59
- if 'coords' in kwargs:
60
- coords = kwargs['coords']
61
- del kwargs['coords']
62
- if 'shape' in kwargs:
63
- shape = kwargs['shape']
64
- del kwargs['shape']
65
- if 'layout' in kwargs:
66
- layout = kwargs['layout']
67
- del kwargs['layout']
68
-
69
- if shape is None:
70
- shape = self.__cal_shape(feats, coords)
71
- if layout is None:
72
- layout = self.__cal_layout(coords, shape[0])
73
- if BACKEND == 'torchsparse':
74
- self.data = SparseTensorData(feats, coords, **kwargs)
75
- elif BACKEND == 'spconv':
76
- spatial_shape = list(coords.max(0)[0] + 1)[1:]
77
- self.data = SparseTensorData(feats.reshape(feats.shape[0], -1), coords, spatial_shape, shape[0], **kwargs)
78
- self.data._features = feats
79
- elif method_id == 1:
80
- data, shape, layout = args + (None,) * (3 - len(args))
81
- if 'data' in kwargs:
82
- data = kwargs['data']
83
- del kwargs['data']
84
- if 'shape' in kwargs:
85
- shape = kwargs['shape']
86
- del kwargs['shape']
87
- if 'layout' in kwargs:
88
- layout = kwargs['layout']
89
- del kwargs['layout']
90
-
91
- self.data = data
92
- if shape is None:
93
- shape = self.__cal_shape(self.feats, self.coords)
94
- if layout is None:
95
- layout = self.__cal_layout(self.coords, shape[0])
96
-
97
- self._shape = shape
98
- self._layout = layout
99
- self._scale = kwargs.get('scale', (1, 1, 1))
100
- self._spatial_cache = kwargs.get('spatial_cache', {})
101
-
102
- if DEBUG:
103
- try:
104
- assert self.feats.shape[0] == self.coords.shape[0], f"Invalid feats shape: {self.feats.shape}, coords shape: {self.coords.shape}"
105
- assert self.shape == self.__cal_shape(self.feats, self.coords), f"Invalid shape: {self.shape}"
106
- assert self.layout == self.__cal_layout(self.coords, self.shape[0]), f"Invalid layout: {self.layout}"
107
- for i in range(self.shape[0]):
108
- assert torch.all(self.coords[self.layout[i], 0] == i), f"The data of batch {i} is not contiguous"
109
- except Exception as e:
110
- print('Debugging information:')
111
- print(f"- Shape: {self.shape}")
112
- print(f"- Layout: {self.layout}")
113
- print(f"- Scale: {self._scale}")
114
- print(f"- Coords: {self.coords}")
115
- raise e
116
-
117
- def __cal_shape(self, feats, coords):
118
- shape = []
119
- shape.append(coords[:, 0].max().item() + 1)
120
- shape.extend([*feats.shape[1:]])
121
- return torch.Size(shape)
122
-
123
- def __cal_layout(self, coords, batch_size):
124
- seq_len = torch.bincount(coords[:, 0], minlength=batch_size)
125
- offset = torch.cumsum(seq_len, dim=0)
126
- layout = [slice((offset[i] - seq_len[i]).item(), offset[i].item()) for i in range(batch_size)]
127
- return layout
128
-
129
- @property
130
- def shape(self) -> torch.Size:
131
- return self._shape
132
-
133
- def dim(self) -> int:
134
- return len(self.shape)
135
-
136
- @property
137
- def layout(self) -> List[slice]:
138
- return self._layout
139
-
140
- @property
141
- def feats(self) -> torch.Tensor:
142
- if BACKEND == 'torchsparse':
143
- return self.data.F
144
- elif BACKEND == 'spconv':
145
- return self.data.features
146
-
147
- @feats.setter
148
- def feats(self, value: torch.Tensor):
149
- if BACKEND == 'torchsparse':
150
- self.data.F = value
151
- elif BACKEND == 'spconv':
152
- self.data.features = value
153
-
154
- @property
155
- def coords(self) -> torch.Tensor:
156
- if BACKEND == 'torchsparse':
157
- return self.data.C
158
- elif BACKEND == 'spconv':
159
- return self.data.indices
160
-
161
- @coords.setter
162
- def coords(self, value: torch.Tensor):
163
- if BACKEND == 'torchsparse':
164
- self.data.C = value
165
- elif BACKEND == 'spconv':
166
- self.data.indices = value
167
-
168
- @property
169
- def dtype(self):
170
- return self.feats.dtype
171
-
172
- @property
173
- def device(self):
174
- return self.feats.device
175
-
176
- @overload
177
- def to(self, dtype: torch.dtype) -> 'SparseTensor': ...
178
-
179
- @overload
180
- def to(self, device: Optional[Union[str, torch.device]] = None, dtype: Optional[torch.dtype] = None) -> 'SparseTensor': ...
181
-
182
- def to(self, *args, **kwargs) -> 'SparseTensor':
183
- device = None
184
- dtype = None
185
- if len(args) == 2:
186
- device, dtype = args
187
- elif len(args) == 1:
188
- if isinstance(args[0], torch.dtype):
189
- dtype = args[0]
190
- else:
191
- device = args[0]
192
- if 'dtype' in kwargs:
193
- assert dtype is None, "to() received multiple values for argument 'dtype'"
194
- dtype = kwargs['dtype']
195
- if 'device' in kwargs:
196
- assert device is None, "to() received multiple values for argument 'device'"
197
- device = kwargs['device']
198
-
199
- new_feats = self.feats.to(device=device, dtype=dtype)
200
- new_coords = self.coords.to(device=device)
201
- return self.replace(new_feats, new_coords)
202
-
203
- def type(self, dtype):
204
- new_feats = self.feats.type(dtype)
205
- return self.replace(new_feats)
206
-
207
- def cpu(self) -> 'SparseTensor':
208
- new_feats = self.feats.cpu()
209
- new_coords = self.coords.cpu()
210
- return self.replace(new_feats, new_coords)
211
-
212
- def cuda(self) -> 'SparseTensor':
213
- new_feats = self.feats.cuda()
214
- new_coords = self.coords.cuda()
215
- return self.replace(new_feats, new_coords)
216
-
217
- def half(self) -> 'SparseTensor':
218
- new_feats = self.feats.half()
219
- return self.replace(new_feats)
220
-
221
- def float(self) -> 'SparseTensor':
222
- new_feats = self.feats.float()
223
- return self.replace(new_feats)
224
-
225
- def detach(self) -> 'SparseTensor':
226
- new_coords = self.coords.detach()
227
- new_feats = self.feats.detach()
228
- return self.replace(new_feats, new_coords)
229
-
230
- def dense(self) -> torch.Tensor:
231
- if BACKEND == 'torchsparse':
232
- return self.data.dense()
233
- elif BACKEND == 'spconv':
234
- return self.data.dense()
235
-
236
- def reshape(self, *shape) -> 'SparseTensor':
237
- new_feats = self.feats.reshape(self.feats.shape[0], *shape)
238
- return self.replace(new_feats)
239
-
240
- def unbind(self, dim: int) -> List['SparseTensor']:
241
- return sparse_unbind(self, dim)
242
-
243
- def replace(self, feats: torch.Tensor, coords: Optional[torch.Tensor] = None) -> 'SparseTensor':
244
- new_shape = [self.shape[0]]
245
- new_shape.extend(feats.shape[1:])
246
- if BACKEND == 'torchsparse':
247
- new_data = SparseTensorData(
248
- feats=feats,
249
- coords=self.data.coords if coords is None else coords,
250
- stride=self.data.stride,
251
- spatial_range=self.data.spatial_range,
252
- )
253
- new_data._caches = self.data._caches
254
- elif BACKEND == 'spconv':
255
- new_data = SparseTensorData(
256
- self.data.features.reshape(self.data.features.shape[0], -1),
257
- self.data.indices,
258
- self.data.spatial_shape,
259
- self.data.batch_size,
260
- self.data.grid,
261
- self.data.voxel_num,
262
- self.data.indice_dict
263
- )
264
- new_data._features = feats
265
- new_data.benchmark = self.data.benchmark
266
- new_data.benchmark_record = self.data.benchmark_record
267
- new_data.thrust_allocator = self.data.thrust_allocator
268
- new_data._timer = self.data._timer
269
- new_data.force_algo = self.data.force_algo
270
- new_data.int8_scale = self.data.int8_scale
271
- if coords is not None:
272
- new_data.indices = coords
273
- new_tensor = SparseTensor(new_data, shape=torch.Size(new_shape), layout=self.layout, scale=self._scale, spatial_cache=self._spatial_cache)
274
- return new_tensor
275
-
276
- @staticmethod
277
- def full(aabb, dim, value, dtype=torch.float32, device=None) -> 'SparseTensor':
278
- N, C = dim
279
- x = torch.arange(aabb[0], aabb[3] + 1)
280
- y = torch.arange(aabb[1], aabb[4] + 1)
281
- z = torch.arange(aabb[2], aabb[5] + 1)
282
- coords = torch.stack(torch.meshgrid(x, y, z, indexing='ij'), dim=-1).reshape(-1, 3)
283
- coords = torch.cat([
284
- torch.arange(N).view(-1, 1).repeat(1, coords.shape[0]).view(-1, 1),
285
- coords.repeat(N, 1),
286
- ], dim=1).to(dtype=torch.int32, device=device)
287
- feats = torch.full((coords.shape[0], C), value, dtype=dtype, device=device)
288
- return SparseTensor(feats=feats, coords=coords)
289
-
290
- def __merge_sparse_cache(self, other: 'SparseTensor') -> dict:
291
- new_cache = {}
292
- for k in set(list(self._spatial_cache.keys()) + list(other._spatial_cache.keys())):
293
- if k in self._spatial_cache:
294
- new_cache[k] = self._spatial_cache[k]
295
- if k in other._spatial_cache:
296
- if k not in new_cache:
297
- new_cache[k] = other._spatial_cache[k]
298
- else:
299
- new_cache[k].update(other._spatial_cache[k])
300
- return new_cache
301
-
302
- def __neg__(self) -> 'SparseTensor':
303
- return self.replace(-self.feats)
304
-
305
- def __elemwise__(self, other: Union[torch.Tensor, 'SparseTensor'], op: callable) -> 'SparseTensor':
306
- if isinstance(other, torch.Tensor):
307
- try:
308
- other = torch.broadcast_to(other, self.shape)
309
- other = sparse_batch_broadcast(self, other)
310
- except:
311
- pass
312
- if isinstance(other, SparseTensor):
313
- other = other.feats
314
- new_feats = op(self.feats, other)
315
- new_tensor = self.replace(new_feats)
316
- if isinstance(other, SparseTensor):
317
- new_tensor._spatial_cache = self.__merge_sparse_cache(other)
318
- return new_tensor
319
-
320
- def __add__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
321
- return self.__elemwise__(other, torch.add)
322
-
323
- def __radd__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
324
- return self.__elemwise__(other, torch.add)
325
-
326
- def __sub__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
327
- return self.__elemwise__(other, torch.sub)
328
-
329
- def __rsub__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
330
- return self.__elemwise__(other, lambda x, y: torch.sub(y, x))
331
-
332
- def __mul__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
333
- return self.__elemwise__(other, torch.mul)
334
-
335
- def __rmul__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
336
- return self.__elemwise__(other, torch.mul)
337
-
338
- def __truediv__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
339
- return self.__elemwise__(other, torch.div)
340
-
341
- def __rtruediv__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
342
- return self.__elemwise__(other, lambda x, y: torch.div(y, x))
343
-
344
- def __getitem__(self, idx):
345
- if isinstance(idx, int):
346
- idx = [idx]
347
- elif isinstance(idx, slice):
348
- idx = range(*idx.indices(self.shape[0]))
349
- elif isinstance(idx, torch.Tensor):
350
- if idx.dtype == torch.bool:
351
- assert idx.shape == (self.shape[0],), f"Invalid index shape: {idx.shape}"
352
- idx = idx.nonzero().squeeze(1)
353
- elif idx.dtype in [torch.int32, torch.int64]:
354
- assert len(idx.shape) == 1, f"Invalid index shape: {idx.shape}"
355
- else:
356
- raise ValueError(f"Unknown index type: {idx.dtype}")
357
- else:
358
- raise ValueError(f"Unknown index type: {type(idx)}")
359
-
360
- coords = []
361
- feats = []
362
- for new_idx, old_idx in enumerate(idx):
363
- coords.append(self.coords[self.layout[old_idx]].clone())
364
- coords[-1][:, 0] = new_idx
365
- feats.append(self.feats[self.layout[old_idx]])
366
- coords = torch.cat(coords, dim=0).contiguous()
367
- feats = torch.cat(feats, dim=0).contiguous()
368
- return SparseTensor(feats=feats, coords=coords)
369
-
370
- def register_spatial_cache(self, key, value) -> None:
371
- """
372
- Register a spatial cache.
373
- The spatial cache can be any thing you want to cache.
374
- The registery and retrieval of the cache is based on current scale.
375
- """
376
- scale_key = str(self._scale)
377
- if scale_key not in self._spatial_cache:
378
- self._spatial_cache[scale_key] = {}
379
- self._spatial_cache[scale_key][key] = value
380
-
381
- def get_spatial_cache(self, key=None):
382
- """
383
- Get a spatial cache.
384
- """
385
- scale_key = str(self._scale)
386
- cur_scale_cache = self._spatial_cache.get(scale_key, {})
387
- if key is None:
388
- return cur_scale_cache
389
- return cur_scale_cache.get(key, None)
390
-
391
-
392
- def sparse_batch_broadcast(input: SparseTensor, other: torch.Tensor) -> torch.Tensor:
393
- """
394
- Broadcast a 1D tensor to a sparse tensor along the batch dimension then perform an operation.
395
-
396
- Args:
397
- input (torch.Tensor): 1D tensor to broadcast.
398
- target (SparseTensor): Sparse tensor to broadcast to.
399
- op (callable): Operation to perform after broadcasting. Defaults to torch.add.
400
- """
401
- coords, feats = input.coords, input.feats
402
- broadcasted = torch.zeros_like(feats)
403
- for k in range(input.shape[0]):
404
- broadcasted[input.layout[k]] = other[k]
405
- return broadcasted
406
-
407
-
408
- def sparse_batch_op(input: SparseTensor, other: torch.Tensor, op: callable = torch.add) -> SparseTensor:
409
- """
410
- Broadcast a 1D tensor to a sparse tensor along the batch dimension then perform an operation.
411
-
412
- Args:
413
- input (torch.Tensor): 1D tensor to broadcast.
414
- target (SparseTensor): Sparse tensor to broadcast to.
415
- op (callable): Operation to perform after broadcasting. Defaults to torch.add.
416
- """
417
- return input.replace(op(input.feats, sparse_batch_broadcast(input, other)))
418
-
419
-
420
- def sparse_cat(inputs: List[SparseTensor], dim: int = 0) -> SparseTensor:
421
- """
422
- Concatenate a list of sparse tensors.
423
-
424
- Args:
425
- inputs (List[SparseTensor]): List of sparse tensors to concatenate.
426
- """
427
- if dim == 0:
428
- start = 0
429
- coords = []
430
- for input in inputs:
431
- coords.append(input.coords.clone())
432
- coords[-1][:, 0] += start
433
- start += input.shape[0]
434
- coords = torch.cat(coords, dim=0)
435
- feats = torch.cat([input.feats for input in inputs], dim=0)
436
- output = SparseTensor(
437
- coords=coords,
438
- feats=feats,
439
- )
440
- else:
441
- feats = torch.cat([input.feats for input in inputs], dim=dim)
442
- output = inputs[0].replace(feats)
443
-
444
- return output
445
-
446
-
447
- def sparse_unbind(input: SparseTensor, dim: int) -> List[SparseTensor]:
448
- """
449
- Unbind a sparse tensor along a dimension.
450
-
451
- Args:
452
- input (SparseTensor): Sparse tensor to unbind.
453
- dim (int): Dimension to unbind.
454
- """
455
- if dim == 0:
456
- return [input[i] for i in range(input.shape[0])]
457
- else:
458
- feats = input.feats.unbind(dim)
459
- return [input.replace(f) for f in feats]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
trellis/modules/sparse/conv/__init__.py DELETED
@@ -1,21 +0,0 @@
1
- from .. import BACKEND
2
-
3
-
4
- SPCONV_ALGO = 'auto' # 'auto', 'implicit_gemm', 'native'
5
-
6
- def __from_env():
7
- import os
8
-
9
- global SPCONV_ALGO
10
- env_spconv_algo = os.environ.get('SPCONV_ALGO')
11
- if env_spconv_algo is not None and env_spconv_algo in ['auto', 'implicit_gemm', 'native']:
12
- SPCONV_ALGO = env_spconv_algo
13
- print(f"[SPARSE][CONV] spconv algo: {SPCONV_ALGO}")
14
-
15
-
16
- __from_env()
17
-
18
- if BACKEND == 'torchsparse':
19
- from .conv_torchsparse import *
20
- elif BACKEND == 'spconv':
21
- from .conv_spconv import *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
trellis/modules/sparse/conv/conv_spconv.py DELETED
@@ -1,80 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- from .. import SparseTensor
4
- from .. import DEBUG
5
- from . import SPCONV_ALGO
6
-
7
- class SparseConv3d(nn.Module):
8
- def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, padding=None, bias=True, indice_key=None):
9
- super(SparseConv3d, self).__init__()
10
- if 'spconv' not in globals():
11
- import spconv.pytorch as spconv
12
- algo = None
13
- if SPCONV_ALGO == 'native':
14
- algo = spconv.ConvAlgo.Native
15
- elif SPCONV_ALGO == 'implicit_gemm':
16
- algo = spconv.ConvAlgo.MaskImplicitGemm
17
- if stride == 1 and (padding is None):
18
- self.conv = spconv.SubMConv3d(in_channels, out_channels, kernel_size, dilation=dilation, bias=bias, indice_key=indice_key, algo=algo)
19
- else:
20
- self.conv = spconv.SparseConv3d(in_channels, out_channels, kernel_size, stride=stride, dilation=dilation, padding=padding, bias=bias, indice_key=indice_key, algo=algo)
21
- self.stride = tuple(stride) if isinstance(stride, (list, tuple)) else (stride, stride, stride)
22
- self.padding = padding
23
-
24
- def forward(self, x: SparseTensor) -> SparseTensor:
25
- spatial_changed = any(s != 1 for s in self.stride) or (self.padding is not None)
26
- new_data = self.conv(x.data)
27
- new_shape = [x.shape[0], self.conv.out_channels]
28
- new_layout = None if spatial_changed else x.layout
29
-
30
- if spatial_changed and (x.shape[0] != 1):
31
- # spconv was non-1 stride will break the contiguous of the output tensor, sort by the coords
32
- fwd = new_data.indices[:, 0].argsort()
33
- bwd = torch.zeros_like(fwd).scatter_(0, fwd, torch.arange(fwd.shape[0], device=fwd.device))
34
- sorted_feats = new_data.features[fwd]
35
- sorted_coords = new_data.indices[fwd]
36
- unsorted_data = new_data
37
- new_data = spconv.SparseConvTensor(sorted_feats, sorted_coords, unsorted_data.spatial_shape, unsorted_data.batch_size) # type: ignore
38
-
39
- out = SparseTensor(
40
- new_data, shape=torch.Size(new_shape), layout=new_layout,
41
- scale=tuple([s * stride for s, stride in zip(x._scale, self.stride)]),
42
- spatial_cache=x._spatial_cache,
43
- )
44
-
45
- if spatial_changed and (x.shape[0] != 1):
46
- out.register_spatial_cache(f'conv_{self.stride}_unsorted_data', unsorted_data)
47
- out.register_spatial_cache(f'conv_{self.stride}_sort_bwd', bwd)
48
-
49
- return out
50
-
51
-
52
- class SparseInverseConv3d(nn.Module):
53
- def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, bias=True, indice_key=None):
54
- super(SparseInverseConv3d, self).__init__()
55
- if 'spconv' not in globals():
56
- import spconv.pytorch as spconv
57
- self.conv = spconv.SparseInverseConv3d(in_channels, out_channels, kernel_size, bias=bias, indice_key=indice_key)
58
- self.stride = tuple(stride) if isinstance(stride, (list, tuple)) else (stride, stride, stride)
59
-
60
- def forward(self, x: SparseTensor) -> SparseTensor:
61
- spatial_changed = any(s != 1 for s in self.stride)
62
- if spatial_changed:
63
- # recover the original spconv order
64
- data = x.get_spatial_cache(f'conv_{self.stride}_unsorted_data')
65
- bwd = x.get_spatial_cache(f'conv_{self.stride}_sort_bwd')
66
- data = data.replace_feature(x.feats[bwd])
67
- if DEBUG:
68
- assert torch.equal(data.indices, x.coords[bwd]), 'Recover the original order failed'
69
- else:
70
- data = x.data
71
-
72
- new_data = self.conv(data)
73
- new_shape = [x.shape[0], self.conv.out_channels]
74
- new_layout = None if spatial_changed else x.layout
75
- out = SparseTensor(
76
- new_data, shape=torch.Size(new_shape), layout=new_layout,
77
- scale=tuple([s // stride for s, stride in zip(x._scale, self.stride)]),
78
- spatial_cache=x._spatial_cache,
79
- )
80
- return out
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
trellis/modules/sparse/conv/conv_torchsparse.py DELETED
@@ -1,38 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- from .. import SparseTensor
4
-
5
-
6
- class SparseConv3d(nn.Module):
7
- def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, bias=True, indice_key=None):
8
- super(SparseConv3d, self).__init__()
9
- if 'torchsparse' not in globals():
10
- import torchsparse
11
- self.conv = torchsparse.nn.Conv3d(in_channels, out_channels, kernel_size, stride, 0, dilation, bias)
12
-
13
- def forward(self, x: SparseTensor) -> SparseTensor:
14
- out = self.conv(x.data)
15
- new_shape = [x.shape[0], self.conv.out_channels]
16
- out = SparseTensor(out, shape=torch.Size(new_shape), layout=x.layout if all(s == 1 for s in self.conv.stride) else None)
17
- out._spatial_cache = x._spatial_cache
18
- out._scale = tuple([s * stride for s, stride in zip(x._scale, self.conv.stride)])
19
- return out
20
-
21
-
22
- class SparseInverseConv3d(nn.Module):
23
- def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, bias=True, indice_key=None):
24
- super(SparseInverseConv3d, self).__init__()
25
- if 'torchsparse' not in globals():
26
- import torchsparse
27
- self.conv = torchsparse.nn.Conv3d(in_channels, out_channels, kernel_size, stride, 0, dilation, bias, transposed=True)
28
-
29
- def forward(self, x: SparseTensor) -> SparseTensor:
30
- out = self.conv(x.data)
31
- new_shape = [x.shape[0], self.conv.out_channels]
32
- out = SparseTensor(out, shape=torch.Size(new_shape), layout=x.layout if all(s == 1 for s in self.conv.stride) else None)
33
- out._spatial_cache = x._spatial_cache
34
- out._scale = tuple([s // stride for s, stride in zip(x._scale, self.conv.stride)])
35
- return out
36
-
37
-
38
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
trellis/modules/sparse/linear.py DELETED
@@ -1,15 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- from . import SparseTensor
4
-
5
- __all__ = [
6
- 'SparseLinear'
7
- ]
8
-
9
-
10
- class SparseLinear(nn.Linear):
11
- def __init__(self, in_features, out_features, bias=True):
12
- super(SparseLinear, self).__init__(in_features, out_features, bias)
13
-
14
- def forward(self, input: SparseTensor) -> SparseTensor:
15
- return input.replace(super().forward(input.feats))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
trellis/modules/sparse/nonlinearity.py DELETED
@@ -1,35 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- from . import SparseTensor
4
-
5
- __all__ = [
6
- 'SparseReLU',
7
- 'SparseSiLU',
8
- 'SparseGELU',
9
- 'SparseActivation'
10
- ]
11
-
12
-
13
- class SparseReLU(nn.ReLU):
14
- def forward(self, input: SparseTensor) -> SparseTensor:
15
- return input.replace(super().forward(input.feats))
16
-
17
-
18
- class SparseSiLU(nn.SiLU):
19
- def forward(self, input: SparseTensor) -> SparseTensor:
20
- return input.replace(super().forward(input.feats))
21
-
22
-
23
- class SparseGELU(nn.GELU):
24
- def forward(self, input: SparseTensor) -> SparseTensor:
25
- return input.replace(super().forward(input.feats))
26
-
27
-
28
- class SparseActivation(nn.Module):
29
- def __init__(self, activation: nn.Module):
30
- super().__init__()
31
- self.activation = activation
32
-
33
- def forward(self, input: SparseTensor) -> SparseTensor:
34
- return input.replace(self.activation(input.feats))
35
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
trellis/modules/sparse/norm.py DELETED
@@ -1,58 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- from . import SparseTensor
4
- from . import DEBUG
5
-
6
- __all__ = [
7
- 'SparseGroupNorm',
8
- 'SparseLayerNorm',
9
- 'SparseGroupNorm32',
10
- 'SparseLayerNorm32',
11
- ]
12
-
13
-
14
- class SparseGroupNorm(nn.GroupNorm):
15
- def __init__(self, num_groups, num_channels, eps=1e-5, affine=True):
16
- super(SparseGroupNorm, self).__init__(num_groups, num_channels, eps, affine)
17
-
18
- def forward(self, input: SparseTensor) -> SparseTensor:
19
- nfeats = torch.zeros_like(input.feats)
20
- for k in range(input.shape[0]):
21
- if DEBUG:
22
- assert (input.coords[input.layout[k], 0] == k).all(), f"SparseGroupNorm: batch index mismatch"
23
- bfeats = input.feats[input.layout[k]]
24
- bfeats = bfeats.permute(1, 0).reshape(1, input.shape[1], -1)
25
- bfeats = super().forward(bfeats)
26
- bfeats = bfeats.reshape(input.shape[1], -1).permute(1, 0)
27
- nfeats[input.layout[k]] = bfeats
28
- return input.replace(nfeats)
29
-
30
-
31
- class SparseLayerNorm(nn.LayerNorm):
32
- def __init__(self, normalized_shape, eps=1e-5, elementwise_affine=True):
33
- super(SparseLayerNorm, self).__init__(normalized_shape, eps, elementwise_affine)
34
-
35
- def forward(self, input: SparseTensor) -> SparseTensor:
36
- nfeats = torch.zeros_like(input.feats)
37
- for k in range(input.shape[0]):
38
- bfeats = input.feats[input.layout[k]]
39
- bfeats = bfeats.permute(1, 0).reshape(1, input.shape[1], -1)
40
- bfeats = super().forward(bfeats)
41
- bfeats = bfeats.reshape(input.shape[1], -1).permute(1, 0)
42
- nfeats[input.layout[k]] = bfeats
43
- return input.replace(nfeats)
44
-
45
-
46
- class SparseGroupNorm32(SparseGroupNorm):
47
- """
48
- A GroupNorm layer that converts to float32 before the forward pass.
49
- """
50
- def forward(self, x: SparseTensor) -> SparseTensor:
51
- return super().forward(x.float()).type(x.dtype)
52
-
53
- class SparseLayerNorm32(SparseLayerNorm):
54
- """
55
- A LayerNorm layer that converts to float32 before the forward pass.
56
- """
57
- def forward(self, x: SparseTensor) -> SparseTensor:
58
- return super().forward(x.float()).type(x.dtype)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
trellis/modules/sparse/spatial.py DELETED
@@ -1,110 +0,0 @@
1
- from typing import *
2
- import torch
3
- import torch.nn as nn
4
- from . import SparseTensor
5
-
6
- __all__ = [
7
- 'SparseDownsample',
8
- 'SparseUpsample',
9
- 'SparseSubdivide'
10
- ]
11
-
12
-
13
- class SparseDownsample(nn.Module):
14
- """
15
- Downsample a sparse tensor by a factor of `factor`.
16
- Implemented as average pooling.
17
- """
18
- def __init__(self, factor: Union[int, Tuple[int, ...], List[int]]):
19
- super(SparseDownsample, self).__init__()
20
- self.factor = tuple(factor) if isinstance(factor, (list, tuple)) else factor
21
-
22
- def forward(self, input: SparseTensor) -> SparseTensor:
23
- DIM = input.coords.shape[-1] - 1
24
- factor = self.factor if isinstance(self.factor, tuple) else (self.factor,) * DIM
25
- assert DIM == len(factor), 'Input coordinates must have the same dimension as the downsample factor.'
26
-
27
- coord = list(input.coords.unbind(dim=-1))
28
- for i, f in enumerate(factor):
29
- coord[i+1] = coord[i+1] // f
30
-
31
- MAX = [coord[i+1].max().item() + 1 for i in range(DIM)]
32
- OFFSET = torch.cumprod(torch.tensor(MAX[::-1]), 0).tolist()[::-1] + [1]
33
- code = sum([c * o for c, o in zip(coord, OFFSET)])
34
- code, idx = code.unique(return_inverse=True)
35
-
36
- new_feats = torch.scatter_reduce(
37
- torch.zeros(code.shape[0], input.feats.shape[1], device=input.feats.device, dtype=input.feats.dtype),
38
- dim=0,
39
- index=idx.unsqueeze(1).expand(-1, input.feats.shape[1]),
40
- src=input.feats,
41
- reduce='mean'
42
- )
43
- new_coords = torch.stack(
44
- [code // OFFSET[0]] +
45
- [(code // OFFSET[i+1]) % MAX[i] for i in range(DIM)],
46
- dim=-1
47
- )
48
- out = SparseTensor(new_feats, new_coords, input.shape,)
49
- out._scale = tuple([s // f for s, f in zip(input._scale, factor)])
50
- out._spatial_cache = input._spatial_cache
51
-
52
- out.register_spatial_cache(f'upsample_{factor}_coords', input.coords)
53
- out.register_spatial_cache(f'upsample_{factor}_layout', input.layout)
54
- out.register_spatial_cache(f'upsample_{factor}_idx', idx)
55
-
56
- return out
57
-
58
-
59
- class SparseUpsample(nn.Module):
60
- """
61
- Upsample a sparse tensor by a factor of `factor`.
62
- Implemented as nearest neighbor interpolation.
63
- """
64
- def __init__(self, factor: Union[int, Tuple[int, int, int], List[int]]):
65
- super(SparseUpsample, self).__init__()
66
- self.factor = tuple(factor) if isinstance(factor, (list, tuple)) else factor
67
-
68
- def forward(self, input: SparseTensor) -> SparseTensor:
69
- DIM = input.coords.shape[-1] - 1
70
- factor = self.factor if isinstance(self.factor, tuple) else (self.factor,) * DIM
71
- assert DIM == len(factor), 'Input coordinates must have the same dimension as the upsample factor.'
72
-
73
- new_coords = input.get_spatial_cache(f'upsample_{factor}_coords')
74
- new_layout = input.get_spatial_cache(f'upsample_{factor}_layout')
75
- idx = input.get_spatial_cache(f'upsample_{factor}_idx')
76
- if any([x is None for x in [new_coords, new_layout, idx]]):
77
- raise ValueError('Upsample cache not found. SparseUpsample must be paired with SparseDownsample.')
78
- new_feats = input.feats[idx]
79
- out = SparseTensor(new_feats, new_coords, input.shape, new_layout)
80
- out._scale = tuple([s * f for s, f in zip(input._scale, factor)])
81
- out._spatial_cache = input._spatial_cache
82
- return out
83
-
84
- class SparseSubdivide(nn.Module):
85
- """
86
- Upsample a sparse tensor by a factor of `factor`.
87
- Implemented as nearest neighbor interpolation.
88
- """
89
- def __init__(self):
90
- super(SparseSubdivide, self).__init__()
91
-
92
- def forward(self, input: SparseTensor) -> SparseTensor:
93
- DIM = input.coords.shape[-1] - 1
94
- # upsample scale=2^DIM
95
- n_cube = torch.ones([2] * DIM, device=input.device, dtype=torch.int)
96
- n_coords = torch.nonzero(n_cube)
97
- n_coords = torch.cat([torch.zeros_like(n_coords[:, :1]), n_coords], dim=-1)
98
- factor = n_coords.shape[0]
99
- assert factor == 2 ** DIM
100
- # print(n_coords.shape)
101
- new_coords = input.coords.clone()
102
- new_coords[:, 1:] *= 2
103
- new_coords = new_coords.unsqueeze(1) + n_coords.unsqueeze(0).to(new_coords.dtype)
104
-
105
- new_feats = input.feats.unsqueeze(1).expand(input.feats.shape[0], factor, *input.feats.shape[1:])
106
- out = SparseTensor(new_feats.flatten(0, 1), new_coords.flatten(0, 1), input.shape)
107
- out._scale = input._scale * 2
108
- out._spatial_cache = input._spatial_cache
109
- return out
110
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
trellis/modules/sparse/transformer/__init__.py DELETED
@@ -1,2 +0,0 @@
1
- from .blocks import *
2
- from .modulated import *
 
 
 
trellis/modules/sparse/transformer/blocks.py DELETED
@@ -1,151 +0,0 @@
1
- from typing import *
2
- import torch
3
- import torch.nn as nn
4
- from ..basic import SparseTensor
5
- from ..linear import SparseLinear
6
- from ..nonlinearity import SparseGELU
7
- from ..attention import SparseMultiHeadAttention, SerializeMode
8
- from ...norm import LayerNorm32
9
-
10
-
11
- class SparseFeedForwardNet(nn.Module):
12
- def __init__(self, channels: int, mlp_ratio: float = 4.0):
13
- super().__init__()
14
- self.mlp = nn.Sequential(
15
- SparseLinear(channels, int(channels * mlp_ratio)),
16
- SparseGELU(approximate="tanh"),
17
- SparseLinear(int(channels * mlp_ratio), channels),
18
- )
19
-
20
- def forward(self, x: SparseTensor) -> SparseTensor:
21
- return self.mlp(x)
22
-
23
-
24
- class SparseTransformerBlock(nn.Module):
25
- """
26
- Sparse Transformer block (MSA + FFN).
27
- """
28
- def __init__(
29
- self,
30
- channels: int,
31
- num_heads: int,
32
- mlp_ratio: float = 4.0,
33
- attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",
34
- window_size: Optional[int] = None,
35
- shift_sequence: Optional[int] = None,
36
- shift_window: Optional[Tuple[int, int, int]] = None,
37
- serialize_mode: Optional[SerializeMode] = None,
38
- use_checkpoint: bool = False,
39
- use_rope: bool = False,
40
- qk_rms_norm: bool = False,
41
- qkv_bias: bool = True,
42
- ln_affine: bool = False,
43
- ):
44
- super().__init__()
45
- self.use_checkpoint = use_checkpoint
46
- self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
47
- self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
48
- self.attn = SparseMultiHeadAttention(
49
- channels,
50
- num_heads=num_heads,
51
- attn_mode=attn_mode,
52
- window_size=window_size,
53
- shift_sequence=shift_sequence,
54
- shift_window=shift_window,
55
- serialize_mode=serialize_mode,
56
- qkv_bias=qkv_bias,
57
- use_rope=use_rope,
58
- qk_rms_norm=qk_rms_norm,
59
- )
60
- self.mlp = SparseFeedForwardNet(
61
- channels,
62
- mlp_ratio=mlp_ratio,
63
- )
64
-
65
- def _forward(self, x: SparseTensor) -> SparseTensor:
66
- h = x.replace(self.norm1(x.feats))
67
- h = self.attn(h)
68
- x = x + h
69
- h = x.replace(self.norm2(x.feats))
70
- h = self.mlp(h)
71
- x = x + h
72
- return x
73
-
74
- def forward(self, x: SparseTensor) -> SparseTensor:
75
- if self.use_checkpoint:
76
- return torch.utils.checkpoint.checkpoint(self._forward, x, use_reentrant=False)
77
- else:
78
- return self._forward(x)
79
-
80
-
81
- class SparseTransformerCrossBlock(nn.Module):
82
- """
83
- Sparse Transformer cross-attention block (MSA + MCA + FFN).
84
- """
85
- def __init__(
86
- self,
87
- channels: int,
88
- ctx_channels: int,
89
- num_heads: int,
90
- mlp_ratio: float = 4.0,
91
- attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",
92
- window_size: Optional[int] = None,
93
- shift_sequence: Optional[int] = None,
94
- shift_window: Optional[Tuple[int, int, int]] = None,
95
- serialize_mode: Optional[SerializeMode] = None,
96
- use_checkpoint: bool = False,
97
- use_rope: bool = False,
98
- qk_rms_norm: bool = False,
99
- qk_rms_norm_cross: bool = False,
100
- qkv_bias: bool = True,
101
- ln_affine: bool = False,
102
- ):
103
- super().__init__()
104
- self.use_checkpoint = use_checkpoint
105
- self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
106
- self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
107
- self.norm3 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
108
- self.self_attn = SparseMultiHeadAttention(
109
- channels,
110
- num_heads=num_heads,
111
- type="self",
112
- attn_mode=attn_mode,
113
- window_size=window_size,
114
- shift_sequence=shift_sequence,
115
- shift_window=shift_window,
116
- serialize_mode=serialize_mode,
117
- qkv_bias=qkv_bias,
118
- use_rope=use_rope,
119
- qk_rms_norm=qk_rms_norm,
120
- )
121
- self.cross_attn = SparseMultiHeadAttention(
122
- channels,
123
- ctx_channels=ctx_channels,
124
- num_heads=num_heads,
125
- type="cross",
126
- attn_mode="full",
127
- qkv_bias=qkv_bias,
128
- qk_rms_norm=qk_rms_norm_cross,
129
- )
130
- self.mlp = SparseFeedForwardNet(
131
- channels,
132
- mlp_ratio=mlp_ratio,
133
- )
134
-
135
- def _forward(self, x: SparseTensor, mod: torch.Tensor, context: torch.Tensor):
136
- h = x.replace(self.norm1(x.feats))
137
- h = self.self_attn(h)
138
- x = x + h
139
- h = x.replace(self.norm2(x.feats))
140
- h = self.cross_attn(h, context)
141
- x = x + h
142
- h = x.replace(self.norm3(x.feats))
143
- h = self.mlp(h)
144
- x = x + h
145
- return x
146
-
147
- def forward(self, x: SparseTensor, context: torch.Tensor):
148
- if self.use_checkpoint:
149
- return torch.utils.checkpoint.checkpoint(self._forward, x, context, use_reentrant=False)
150
- else:
151
- return self._forward(x, context)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
trellis/modules/sparse/transformer/modulated.py DELETED
@@ -1,166 +0,0 @@
1
- from typing import *
2
- import torch
3
- import torch.nn as nn
4
- from ..basic import SparseTensor
5
- from ..attention import SparseMultiHeadAttention, SerializeMode
6
- from ...norm import LayerNorm32
7
- from .blocks import SparseFeedForwardNet
8
-
9
-
10
- class ModulatedSparseTransformerBlock(nn.Module):
11
- """
12
- Sparse Transformer block (MSA + FFN) with adaptive layer norm conditioning.
13
- """
14
- def __init__(
15
- self,
16
- channels: int,
17
- num_heads: int,
18
- mlp_ratio: float = 4.0,
19
- attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",
20
- window_size: Optional[int] = None,
21
- shift_sequence: Optional[int] = None,
22
- shift_window: Optional[Tuple[int, int, int]] = None,
23
- serialize_mode: Optional[SerializeMode] = None,
24
- use_checkpoint: bool = False,
25
- use_rope: bool = False,
26
- qk_rms_norm: bool = False,
27
- qkv_bias: bool = True,
28
- share_mod: bool = False,
29
- ):
30
- super().__init__()
31
- self.use_checkpoint = use_checkpoint
32
- self.share_mod = share_mod
33
- self.norm1 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
34
- self.norm2 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
35
- self.attn = SparseMultiHeadAttention(
36
- channels,
37
- num_heads=num_heads,
38
- attn_mode=attn_mode,
39
- window_size=window_size,
40
- shift_sequence=shift_sequence,
41
- shift_window=shift_window,
42
- serialize_mode=serialize_mode,
43
- qkv_bias=qkv_bias,
44
- use_rope=use_rope,
45
- qk_rms_norm=qk_rms_norm,
46
- )
47
- self.mlp = SparseFeedForwardNet(
48
- channels,
49
- mlp_ratio=mlp_ratio,
50
- )
51
- if not share_mod:
52
- self.adaLN_modulation = nn.Sequential(
53
- nn.SiLU(),
54
- nn.Linear(channels, 6 * channels, bias=True)
55
- )
56
-
57
- def _forward(self, x: SparseTensor, mod: torch.Tensor) -> SparseTensor:
58
- if self.share_mod:
59
- shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(6, dim=1)
60
- else:
61
- shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(mod).chunk(6, dim=1)
62
- h = x.replace(self.norm1(x.feats))
63
- h = h * (1 + scale_msa) + shift_msa
64
- h = self.attn(h)
65
- h = h * gate_msa
66
- x = x + h
67
- h = x.replace(self.norm2(x.feats))
68
- h = h * (1 + scale_mlp) + shift_mlp
69
- h = self.mlp(h)
70
- h = h * gate_mlp
71
- x = x + h
72
- return x
73
-
74
- def forward(self, x: SparseTensor, mod: torch.Tensor) -> SparseTensor:
75
- if self.use_checkpoint:
76
- return torch.utils.checkpoint.checkpoint(self._forward, x, mod, use_reentrant=False)
77
- else:
78
- return self._forward(x, mod)
79
-
80
-
81
- class ModulatedSparseTransformerCrossBlock(nn.Module):
82
- """
83
- Sparse Transformer cross-attention block (MSA + MCA + FFN) with adaptive layer norm conditioning.
84
- """
85
- def __init__(
86
- self,
87
- channels: int,
88
- ctx_channels: int,
89
- num_heads: int,
90
- mlp_ratio: float = 4.0,
91
- attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",
92
- window_size: Optional[int] = None,
93
- shift_sequence: Optional[int] = None,
94
- shift_window: Optional[Tuple[int, int, int]] = None,
95
- serialize_mode: Optional[SerializeMode] = None,
96
- use_checkpoint: bool = False,
97
- use_rope: bool = False,
98
- qk_rms_norm: bool = False,
99
- qk_rms_norm_cross: bool = False,
100
- qkv_bias: bool = True,
101
- share_mod: bool = False,
102
-
103
- ):
104
- super().__init__()
105
- self.use_checkpoint = use_checkpoint
106
- self.share_mod = share_mod
107
- self.norm1 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
108
- self.norm2 = LayerNorm32(channels, elementwise_affine=True, eps=1e-6)
109
- self.norm3 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
110
- self.self_attn = SparseMultiHeadAttention(
111
- channels,
112
- num_heads=num_heads,
113
- type="self",
114
- attn_mode=attn_mode,
115
- window_size=window_size,
116
- shift_sequence=shift_sequence,
117
- shift_window=shift_window,
118
- serialize_mode=serialize_mode,
119
- qkv_bias=qkv_bias,
120
- use_rope=use_rope,
121
- qk_rms_norm=qk_rms_norm,
122
- )
123
- self.cross_attn = SparseMultiHeadAttention(
124
- channels,
125
- ctx_channels=ctx_channels,
126
- num_heads=num_heads,
127
- type="cross",
128
- attn_mode="full",
129
- qkv_bias=qkv_bias,
130
- qk_rms_norm=qk_rms_norm_cross,
131
- )
132
- self.mlp = SparseFeedForwardNet(
133
- channels,
134
- mlp_ratio=mlp_ratio,
135
- )
136
- if not share_mod:
137
- self.adaLN_modulation = nn.Sequential(
138
- nn.SiLU(),
139
- nn.Linear(channels, 6 * channels, bias=True)
140
- )
141
-
142
- def _forward(self, x: SparseTensor, mod: torch.Tensor, context: torch.Tensor) -> SparseTensor:
143
- if self.share_mod:
144
- shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(6, dim=1)
145
- else:
146
- shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(mod).chunk(6, dim=1)
147
- h = x.replace(self.norm1(x.feats))
148
- h = h * (1 + scale_msa) + shift_msa
149
- h = self.self_attn(h)
150
- h = h * gate_msa
151
- x = x + h
152
- h = x.replace(self.norm2(x.feats))
153
- h = self.cross_attn(h, context)
154
- x = x + h
155
- h = x.replace(self.norm3(x.feats))
156
- h = h * (1 + scale_mlp) + shift_mlp
157
- h = self.mlp(h)
158
- h = h * gate_mlp
159
- x = x + h
160
- return x
161
-
162
- def forward(self, x: SparseTensor, mod: torch.Tensor, context: torch.Tensor) -> SparseTensor:
163
- if self.use_checkpoint:
164
- return torch.utils.checkpoint.checkpoint(self._forward, x, mod, context, use_reentrant=False)
165
- else:
166
- return self._forward(x, mod, context)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
trellis/modules/spatial.py DELETED
@@ -1,48 +0,0 @@
1
- import torch
2
-
3
-
4
- def pixel_shuffle_3d(x: torch.Tensor, scale_factor: int) -> torch.Tensor:
5
- """
6
- 3D pixel shuffle.
7
- """
8
- B, C, H, W, D = x.shape
9
- C_ = C // scale_factor**3
10
- x = x.reshape(B, C_, scale_factor, scale_factor, scale_factor, H, W, D)
11
- x = x.permute(0, 1, 5, 2, 6, 3, 7, 4)
12
- x = x.reshape(B, C_, H*scale_factor, W*scale_factor, D*scale_factor)
13
- return x
14
-
15
-
16
- def patchify(x: torch.Tensor, patch_size: int):
17
- """
18
- Patchify a tensor.
19
-
20
- Args:
21
- x (torch.Tensor): (N, C, *spatial) tensor
22
- patch_size (int): Patch size
23
- """
24
- DIM = x.dim() - 2
25
- for d in range(2, DIM + 2):
26
- assert x.shape[d] % patch_size == 0, f"Dimension {d} of input tensor must be divisible by patch size, got {x.shape[d]} and {patch_size}"
27
-
28
- x = x.reshape(*x.shape[:2], *sum([[x.shape[d] // patch_size, patch_size] for d in range(2, DIM + 2)], []))
29
- x = x.permute(0, 1, *([2 * i + 3 for i in range(DIM)] + [2 * i + 2 for i in range(DIM)]))
30
- x = x.reshape(x.shape[0], x.shape[1] * (patch_size ** DIM), *(x.shape[-DIM:]))
31
- return x
32
-
33
-
34
- def unpatchify(x: torch.Tensor, patch_size: int):
35
- """
36
- Unpatchify a tensor.
37
-
38
- Args:
39
- x (torch.Tensor): (N, C, *spatial) tensor
40
- patch_size (int): Patch size
41
- """
42
- DIM = x.dim() - 2
43
- assert x.shape[1] % (patch_size ** DIM) == 0, f"Second dimension of input tensor must be divisible by patch size to unpatchify, got {x.shape[1]} and {patch_size ** DIM}"
44
-
45
- x = x.reshape(x.shape[0], x.shape[1] // (patch_size ** DIM), *([patch_size] * DIM), *(x.shape[-DIM:]))
46
- x = x.permute(0, 1, *(sum([[2 + DIM + i, 2 + i] for i in range(DIM)], [])))
47
- x = x.reshape(x.shape[0], x.shape[1], *[x.shape[2 + 2 * i] * patch_size for i in range(DIM)])
48
- return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
trellis/modules/transformer/__init__.py DELETED
@@ -1,2 +0,0 @@
1
- from .blocks import *
2
- from .modulated import *
 
 
 
trellis/modules/transformer/blocks.py DELETED
@@ -1,182 +0,0 @@
1
- from typing import *
2
- import torch
3
- import torch.nn as nn
4
- from ..attention import MultiHeadAttention
5
- from ..norm import LayerNorm32
6
-
7
-
8
- class AbsolutePositionEmbedder(nn.Module):
9
- """
10
- Embeds spatial positions into vector representations.
11
- """
12
- def __init__(self, channels: int, in_channels: int = 3):
13
- super().__init__()
14
- self.channels = channels
15
- self.in_channels = in_channels
16
- self.freq_dim = channels // in_channels // 2
17
- self.freqs = torch.arange(self.freq_dim, dtype=torch.float32) / self.freq_dim
18
- self.freqs = 1.0 / (10000 ** self.freqs)
19
-
20
- def _sin_cos_embedding(self, x: torch.Tensor) -> torch.Tensor:
21
- """
22
- Create sinusoidal position embeddings.
23
-
24
- Args:
25
- x: a 1-D Tensor of N indices
26
-
27
- Returns:
28
- an (N, D) Tensor of positional embeddings.
29
- """
30
- self.freqs = self.freqs.to(x.device)
31
- out = torch.outer(x, self.freqs)
32
- out = torch.cat([torch.sin(out), torch.cos(out)], dim=-1)
33
- return out
34
-
35
- def forward(self, x: torch.Tensor) -> torch.Tensor:
36
- """
37
- Args:
38
- x (torch.Tensor): (N, D) tensor of spatial positions
39
- """
40
- N, D = x.shape
41
- assert D == self.in_channels, "Input dimension must match number of input channels"
42
- embed = self._sin_cos_embedding(x.reshape(-1))
43
- embed = embed.reshape(N, -1)
44
- if embed.shape[1] < self.channels:
45
- embed = torch.cat([embed, torch.zeros(N, self.channels - embed.shape[1], device=embed.device)], dim=-1)
46
- return embed
47
-
48
-
49
- class FeedForwardNet(nn.Module):
50
- def __init__(self, channels: int, mlp_ratio: float = 4.0):
51
- super().__init__()
52
- self.mlp = nn.Sequential(
53
- nn.Linear(channels, int(channels * mlp_ratio)),
54
- nn.GELU(approximate="tanh"),
55
- nn.Linear(int(channels * mlp_ratio), channels),
56
- )
57
-
58
- def forward(self, x: torch.Tensor) -> torch.Tensor:
59
- return self.mlp(x)
60
-
61
-
62
- class TransformerBlock(nn.Module):
63
- """
64
- Transformer block (MSA + FFN).
65
- """
66
- def __init__(
67
- self,
68
- channels: int,
69
- num_heads: int,
70
- mlp_ratio: float = 4.0,
71
- attn_mode: Literal["full", "windowed"] = "full",
72
- window_size: Optional[int] = None,
73
- shift_window: Optional[int] = None,
74
- use_checkpoint: bool = False,
75
- use_rope: bool = False,
76
- qk_rms_norm: bool = False,
77
- qkv_bias: bool = True,
78
- ln_affine: bool = False,
79
- ):
80
- super().__init__()
81
- self.use_checkpoint = use_checkpoint
82
- self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
83
- self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
84
- self.attn = MultiHeadAttention(
85
- channels,
86
- num_heads=num_heads,
87
- attn_mode=attn_mode,
88
- window_size=window_size,
89
- shift_window=shift_window,
90
- qkv_bias=qkv_bias,
91
- use_rope=use_rope,
92
- qk_rms_norm=qk_rms_norm,
93
- )
94
- self.mlp = FeedForwardNet(
95
- channels,
96
- mlp_ratio=mlp_ratio,
97
- )
98
-
99
- def _forward(self, x: torch.Tensor) -> torch.Tensor:
100
- h = self.norm1(x)
101
- h = self.attn(h)
102
- x = x + h
103
- h = self.norm2(x)
104
- h = self.mlp(h)
105
- x = x + h
106
- return x
107
-
108
- def forward(self, x: torch.Tensor) -> torch.Tensor:
109
- if self.use_checkpoint:
110
- return torch.utils.checkpoint.checkpoint(self._forward, x, use_reentrant=False)
111
- else:
112
- return self._forward(x)
113
-
114
-
115
- class TransformerCrossBlock(nn.Module):
116
- """
117
- Transformer cross-attention block (MSA + MCA + FFN).
118
- """
119
- def __init__(
120
- self,
121
- channels: int,
122
- ctx_channels: int,
123
- num_heads: int,
124
- mlp_ratio: float = 4.0,
125
- attn_mode: Literal["full", "windowed"] = "full",
126
- window_size: Optional[int] = None,
127
- shift_window: Optional[Tuple[int, int, int]] = None,
128
- use_checkpoint: bool = False,
129
- use_rope: bool = False,
130
- qk_rms_norm: bool = False,
131
- qk_rms_norm_cross: bool = False,
132
- qkv_bias: bool = True,
133
- ln_affine: bool = False,
134
- ):
135
- super().__init__()
136
- self.use_checkpoint = use_checkpoint
137
- self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
138
- self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
139
- self.norm3 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
140
- self.self_attn = MultiHeadAttention(
141
- channels,
142
- num_heads=num_heads,
143
- type="self",
144
- attn_mode=attn_mode,
145
- window_size=window_size,
146
- shift_window=shift_window,
147
- qkv_bias=qkv_bias,
148
- use_rope=use_rope,
149
- qk_rms_norm=qk_rms_norm,
150
- )
151
- self.cross_attn = MultiHeadAttention(
152
- channels,
153
- ctx_channels=ctx_channels,
154
- num_heads=num_heads,
155
- type="cross",
156
- attn_mode="full",
157
- qkv_bias=qkv_bias,
158
- qk_rms_norm=qk_rms_norm_cross,
159
- )
160
- self.mlp = FeedForwardNet(
161
- channels,
162
- mlp_ratio=mlp_ratio,
163
- )
164
-
165
- def _forward(self, x: torch.Tensor, context: torch.Tensor):
166
- h = self.norm1(x)
167
- h = self.self_attn(h)
168
- x = x + h
169
- h = self.norm2(x)
170
- h = self.cross_attn(h, context)
171
- x = x + h
172
- h = self.norm3(x)
173
- h = self.mlp(h)
174
- x = x + h
175
- return x
176
-
177
- def forward(self, x: torch.Tensor, context: torch.Tensor):
178
- if self.use_checkpoint:
179
- return torch.utils.checkpoint.checkpoint(self._forward, x, context, use_reentrant=False)
180
- else:
181
- return self._forward(x, context)
182
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
trellis/modules/transformer/modulated.py DELETED
@@ -1,157 +0,0 @@
1
- from typing import *
2
- import torch
3
- import torch.nn as nn
4
- from ..attention import MultiHeadAttention
5
- from ..norm import LayerNorm32
6
- from .blocks import FeedForwardNet
7
-
8
-
9
- class ModulatedTransformerBlock(nn.Module):
10
- """
11
- Transformer block (MSA + FFN) with adaptive layer norm conditioning.
12
- """
13
- def __init__(
14
- self,
15
- channels: int,
16
- num_heads: int,
17
- mlp_ratio: float = 4.0,
18
- attn_mode: Literal["full", "windowed"] = "full",
19
- window_size: Optional[int] = None,
20
- shift_window: Optional[Tuple[int, int, int]] = None,
21
- use_checkpoint: bool = False,
22
- use_rope: bool = False,
23
- qk_rms_norm: bool = False,
24
- qkv_bias: bool = True,
25
- share_mod: bool = False,
26
- ):
27
- super().__init__()
28
- self.use_checkpoint = use_checkpoint
29
- self.share_mod = share_mod
30
- self.norm1 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
31
- self.norm2 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
32
- self.attn = MultiHeadAttention(
33
- channels,
34
- num_heads=num_heads,
35
- attn_mode=attn_mode,
36
- window_size=window_size,
37
- shift_window=shift_window,
38
- qkv_bias=qkv_bias,
39
- use_rope=use_rope,
40
- qk_rms_norm=qk_rms_norm,
41
- )
42
- self.mlp = FeedForwardNet(
43
- channels,
44
- mlp_ratio=mlp_ratio,
45
- )
46
- if not share_mod:
47
- self.adaLN_modulation = nn.Sequential(
48
- nn.SiLU(),
49
- nn.Linear(channels, 6 * channels, bias=True)
50
- )
51
-
52
- def _forward(self, x: torch.Tensor, mod: torch.Tensor) -> torch.Tensor:
53
- if self.share_mod:
54
- shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(6, dim=1)
55
- else:
56
- shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(mod).chunk(6, dim=1)
57
- h = self.norm1(x)
58
- h = h * (1 + scale_msa.unsqueeze(1)) + shift_msa.unsqueeze(1)
59
- h = self.attn(h)
60
- h = h * gate_msa.unsqueeze(1)
61
- x = x + h
62
- h = self.norm2(x)
63
- h = h * (1 + scale_mlp.unsqueeze(1)) + shift_mlp.unsqueeze(1)
64
- h = self.mlp(h)
65
- h = h * gate_mlp.unsqueeze(1)
66
- x = x + h
67
- return x
68
-
69
- def forward(self, x: torch.Tensor, mod: torch.Tensor) -> torch.Tensor:
70
- if self.use_checkpoint:
71
- return torch.utils.checkpoint.checkpoint(self._forward, x, mod, use_reentrant=False)
72
- else:
73
- return self._forward(x, mod)
74
-
75
-
76
- class ModulatedTransformerCrossBlock(nn.Module):
77
- """
78
- Transformer cross-attention block (MSA + MCA + FFN) with adaptive layer norm conditioning.
79
- """
80
- def __init__(
81
- self,
82
- channels: int,
83
- ctx_channels: int,
84
- num_heads: int,
85
- mlp_ratio: float = 4.0,
86
- attn_mode: Literal["full", "windowed"] = "full",
87
- window_size: Optional[int] = None,
88
- shift_window: Optional[Tuple[int, int, int]] = None,
89
- use_checkpoint: bool = False,
90
- use_rope: bool = False,
91
- qk_rms_norm: bool = False,
92
- qk_rms_norm_cross: bool = False,
93
- qkv_bias: bool = True,
94
- share_mod: bool = False,
95
- ):
96
- super().__init__()
97
- self.use_checkpoint = use_checkpoint
98
- self.share_mod = share_mod
99
- self.norm1 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
100
- self.norm2 = LayerNorm32(channels, elementwise_affine=True, eps=1e-6)
101
- self.norm3 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
102
- self.self_attn = MultiHeadAttention(
103
- channels,
104
- num_heads=num_heads,
105
- type="self",
106
- attn_mode=attn_mode,
107
- window_size=window_size,
108
- shift_window=shift_window,
109
- qkv_bias=qkv_bias,
110
- use_rope=use_rope,
111
- qk_rms_norm=qk_rms_norm,
112
- )
113
- self.cross_attn = MultiHeadAttention(
114
- channels,
115
- ctx_channels=ctx_channels,
116
- num_heads=num_heads,
117
- type="cross",
118
- attn_mode="full",
119
- qkv_bias=qkv_bias,
120
- qk_rms_norm=qk_rms_norm_cross,
121
- )
122
- self.mlp = FeedForwardNet(
123
- channels,
124
- mlp_ratio=mlp_ratio,
125
- )
126
- if not share_mod:
127
- self.adaLN_modulation = nn.Sequential(
128
- nn.SiLU(),
129
- nn.Linear(channels, 6 * channels, bias=True)
130
- )
131
-
132
- def _forward(self, x: torch.Tensor, mod: torch.Tensor, context: torch.Tensor):
133
- if self.share_mod:
134
- shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(6, dim=1)
135
- else:
136
- shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(mod).chunk(6, dim=1)
137
- h = self.norm1(x)
138
- h = h * (1 + scale_msa.unsqueeze(1)) + shift_msa.unsqueeze(1)
139
- h = self.self_attn(h)
140
- h = h * gate_msa.unsqueeze(1)
141
- x = x + h
142
- h = self.norm2(x)
143
- h = self.cross_attn(h, context)
144
- x = x + h
145
- h = self.norm3(x)
146
- h = h * (1 + scale_mlp.unsqueeze(1)) + shift_mlp.unsqueeze(1)
147
- h = self.mlp(h)
148
- h = h * gate_mlp.unsqueeze(1)
149
- x = x + h
150
- return x
151
-
152
- def forward(self, x: torch.Tensor, mod: torch.Tensor, context: torch.Tensor):
153
- if self.use_checkpoint:
154
- return torch.utils.checkpoint.checkpoint(self._forward, x, mod, context, use_reentrant=False)
155
- else:
156
- return self._forward(x, mod, context)
157
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
trellis/modules/utils.py DELETED
@@ -1,54 +0,0 @@
1
- import torch.nn as nn
2
- from ..modules import sparse as sp
3
-
4
- FP16_MODULES = (
5
- nn.Conv1d,
6
- nn.Conv2d,
7
- nn.Conv3d,
8
- nn.ConvTranspose1d,
9
- nn.ConvTranspose2d,
10
- nn.ConvTranspose3d,
11
- nn.Linear,
12
- sp.SparseConv3d,
13
- sp.SparseInverseConv3d,
14
- sp.SparseLinear,
15
- )
16
-
17
- def convert_module_to_f16(l):
18
- """
19
- Convert primitive modules to float16.
20
- """
21
- if isinstance(l, FP16_MODULES):
22
- for p in l.parameters():
23
- p.data = p.data.half()
24
-
25
-
26
- def convert_module_to_f32(l):
27
- """
28
- Convert primitive modules to float32, undoing convert_module_to_f16().
29
- """
30
- if isinstance(l, FP16_MODULES):
31
- for p in l.parameters():
32
- p.data = p.data.float()
33
-
34
-
35
- def zero_module(module):
36
- """
37
- Zero out the parameters of a module and return it.
38
- """
39
- for p in module.parameters():
40
- p.detach().zero_()
41
- return module
42
-
43
-
44
- def scale_module(module, scale):
45
- """
46
- Scale the parameters of a module and return it.
47
- """
48
- for p in module.parameters():
49
- p.detach().mul_(scale)
50
- return module
51
-
52
-
53
- def modulate(x, shift, scale):
54
- return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)