TRELLIS-Texto3D / dataset_toolkits /extract_feature.py
cavargas10's picture
Upload 288 files
178f950 verified
raw
history blame contribute delete
8.07 kB
import os
import copy
import sys
import json
import importlib
import argparse
import torch
import torch.nn.functional as F
import numpy as np
import pandas as pd
import utils3d
from tqdm import tqdm
from easydict import EasyDict as edict
from concurrent.futures import ThreadPoolExecutor
from queue import Queue
from torchvision import transforms
from PIL import Image
torch.set_grad_enabled(False)
def get_data(frames, sha256):
with ThreadPoolExecutor(max_workers=16) as executor:
def worker(view):
image_path = os.path.join(opt.output_dir, 'renders', sha256, view['file_path'])
try:
image = Image.open(image_path)
except:
print(f"Error loading image {image_path}")
return None
image = image.resize((518, 518), Image.Resampling.LANCZOS)
image = np.array(image).astype(np.float32) / 255
image = image[:, :, :3] * image[:, :, 3:]
image = torch.from_numpy(image).permute(2, 0, 1).float()
c2w = torch.tensor(view['transform_matrix'])
c2w[:3, 1:3] *= -1
extrinsics = torch.inverse(c2w)
fov = view['camera_angle_x']
intrinsics = utils3d.torch.intrinsics_from_fov_xy(torch.tensor(fov), torch.tensor(fov))
return {
'image': image,
'extrinsics': extrinsics,
'intrinsics': intrinsics
}
datas = executor.map(worker, frames)
for data in datas:
if data is not None:
yield data
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--output_dir', type=str, required=True,
help='Directory to save the metadata')
parser.add_argument('--filter_low_aesthetic_score', type=float, default=None,
help='Filter objects with aesthetic score lower than this value')
parser.add_argument('--model', type=str, default='dinov2_vitl14_reg',
help='Feature extraction model')
parser.add_argument('--instances', type=str, default=None,
help='Instances to process')
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--rank', type=int, default=0)
parser.add_argument('--world_size', type=int, default=1)
opt = parser.parse_args()
opt = edict(vars(opt))
feature_name = opt.model
os.makedirs(os.path.join(opt.output_dir, 'features', feature_name), exist_ok=True)
# load model
dinov2_model = torch.hub.load('facebookresearch/dinov2', opt.model)
dinov2_model.eval().cuda()
transform = transforms.Compose([
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
n_patch = 518 // 14
# get file list
if os.path.exists(os.path.join(opt.output_dir, 'metadata.csv')):
metadata = pd.read_csv(os.path.join(opt.output_dir, 'metadata.csv'))
else:
raise ValueError('metadata.csv not found')
if opt.instances is not None:
with open(opt.instances, 'r') as f:
instances = f.read().splitlines()
metadata = metadata[metadata['sha256'].isin(instances)]
else:
if opt.filter_low_aesthetic_score is not None:
metadata = metadata[metadata['aesthetic_score'] >= opt.filter_low_aesthetic_score]
if f'feature_{feature_name}' in metadata.columns:
metadata = metadata[metadata[f'feature_{feature_name}'] == False]
metadata = metadata[metadata['voxelized'] == True]
metadata = metadata[metadata['rendered'] == True]
start = len(metadata) * opt.rank // opt.world_size
end = len(metadata) * (opt.rank + 1) // opt.world_size
metadata = metadata[start:end]
records = []
# filter out objects that are already processed
sha256s = list(metadata['sha256'].values)
for sha256 in copy.copy(sha256s):
if os.path.exists(os.path.join(opt.output_dir, 'features', feature_name, f'{sha256}.npz')):
records.append({'sha256': sha256, f'feature_{feature_name}' : True})
sha256s.remove(sha256)
# extract features
load_queue = Queue(maxsize=4)
try:
with ThreadPoolExecutor(max_workers=8) as loader_executor, \
ThreadPoolExecutor(max_workers=8) as saver_executor:
def loader(sha256):
try:
with open(os.path.join(opt.output_dir, 'renders', sha256, 'transforms.json'), 'r') as f:
metadata = json.load(f)
frames = metadata['frames']
data = []
for datum in get_data(frames, sha256):
datum['image'] = transform(datum['image'])
data.append(datum)
positions = utils3d.io.read_ply(os.path.join(opt.output_dir, 'voxels', f'{sha256}.ply'))[0]
load_queue.put((sha256, data, positions))
except Exception as e:
print(f"Error loading data for {sha256}: {e}")
loader_executor.map(loader, sha256s)
def saver(sha256, pack, patchtokens, uv):
pack['patchtokens'] = F.grid_sample(
patchtokens,
uv.unsqueeze(1),
mode='bilinear',
align_corners=False,
).squeeze(2).permute(0, 2, 1).cpu().numpy()
pack['patchtokens'] = np.mean(pack['patchtokens'], axis=0).astype(np.float16)
save_path = os.path.join(opt.output_dir, 'features', feature_name, f'{sha256}.npz')
np.savez_compressed(save_path, **pack)
records.append({'sha256': sha256, f'feature_{feature_name}' : True})
for _ in tqdm(range(len(sha256s)), desc="Extracting features"):
sha256, data, positions = load_queue.get()
positions = torch.from_numpy(positions).float().cuda()
indices = ((positions + 0.5) * 64).long()
assert torch.all(indices >= 0) and torch.all(indices < 64), "Some vertices are out of bounds"
n_views = len(data)
N = positions.shape[0]
pack = {
'indices': indices.cpu().numpy().astype(np.uint8),
}
patchtokens_lst = []
uv_lst = []
for i in range(0, n_views, opt.batch_size):
batch_data = data[i:i+opt.batch_size]
bs = len(batch_data)
batch_images = torch.stack([d['image'] for d in batch_data]).cuda()
batch_extrinsics = torch.stack([d['extrinsics'] for d in batch_data]).cuda()
batch_intrinsics = torch.stack([d['intrinsics'] for d in batch_data]).cuda()
features = dinov2_model(batch_images, is_training=True)
uv = utils3d.torch.project_cv(positions, batch_extrinsics, batch_intrinsics)[0] * 2 - 1
patchtokens = features['x_prenorm'][:, dinov2_model.num_register_tokens + 1:].permute(0, 2, 1).reshape(bs, 1024, n_patch, n_patch)
patchtokens_lst.append(patchtokens)
uv_lst.append(uv)
patchtokens = torch.cat(patchtokens_lst, dim=0)
uv = torch.cat(uv_lst, dim=0)
# save features
saver_executor.submit(saver, sha256, pack, patchtokens, uv)
saver_executor.shutdown(wait=True)
except:
print("Error happened during processing.")
records = pd.DataFrame.from_records(records)
records.to_csv(os.path.join(opt.output_dir, f'feature_{feature_name}_{opt.rank}.csv'), index=False)