File size: 8,065 Bytes
178f950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
import copy
import sys
import json
import importlib
import argparse
import torch
import torch.nn.functional as F
import numpy as np
import pandas as pd
import utils3d
from tqdm import tqdm
from easydict import EasyDict as edict
from concurrent.futures import ThreadPoolExecutor
from queue import Queue
from torchvision import transforms
from PIL import Image


torch.set_grad_enabled(False)


def get_data(frames, sha256):
    with ThreadPoolExecutor(max_workers=16) as executor:
        def worker(view):
            image_path = os.path.join(opt.output_dir, 'renders', sha256, view['file_path'])
            try:
                image = Image.open(image_path)
            except:
                print(f"Error loading image {image_path}")
                return None
            image = image.resize((518, 518), Image.Resampling.LANCZOS)
            image = np.array(image).astype(np.float32) / 255
            image = image[:, :, :3] * image[:, :, 3:]
            image = torch.from_numpy(image).permute(2, 0, 1).float()

            c2w = torch.tensor(view['transform_matrix'])
            c2w[:3, 1:3] *= -1
            extrinsics = torch.inverse(c2w)
            fov = view['camera_angle_x']
            intrinsics = utils3d.torch.intrinsics_from_fov_xy(torch.tensor(fov), torch.tensor(fov))

            return {
                'image': image,
                'extrinsics': extrinsics,
                'intrinsics': intrinsics
            }
        
        datas = executor.map(worker, frames)
        for data in datas:
            if data is not None:
                yield data
                

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--output_dir', type=str, required=True,
                        help='Directory to save the metadata')
    parser.add_argument('--filter_low_aesthetic_score', type=float, default=None,
                        help='Filter objects with aesthetic score lower than this value')
    parser.add_argument('--model', type=str, default='dinov2_vitl14_reg',
                        help='Feature extraction model')
    parser.add_argument('--instances', type=str, default=None,
                        help='Instances to process')
    parser.add_argument('--batch_size', type=int, default=16)
    parser.add_argument('--rank', type=int, default=0)
    parser.add_argument('--world_size', type=int, default=1)
    opt = parser.parse_args()
    opt = edict(vars(opt))

    feature_name = opt.model
    os.makedirs(os.path.join(opt.output_dir, 'features', feature_name), exist_ok=True)

    # load model
    dinov2_model = torch.hub.load('facebookresearch/dinov2', opt.model)
    dinov2_model.eval().cuda()
    transform = transforms.Compose([
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])
    n_patch = 518 // 14

    # get file list
    if os.path.exists(os.path.join(opt.output_dir, 'metadata.csv')):
        metadata = pd.read_csv(os.path.join(opt.output_dir, 'metadata.csv'))
    else:
        raise ValueError('metadata.csv not found')
    if opt.instances is not None:
        with open(opt.instances, 'r') as f:
            instances = f.read().splitlines()
        metadata = metadata[metadata['sha256'].isin(instances)]
    else:
        if opt.filter_low_aesthetic_score is not None:
            metadata = metadata[metadata['aesthetic_score'] >= opt.filter_low_aesthetic_score]
        if f'feature_{feature_name}' in metadata.columns:
            metadata = metadata[metadata[f'feature_{feature_name}'] == False]
        metadata = metadata[metadata['voxelized'] == True]
        metadata = metadata[metadata['rendered'] == True]

    start = len(metadata) * opt.rank // opt.world_size
    end = len(metadata) * (opt.rank + 1) // opt.world_size
    metadata = metadata[start:end]
    records = []

    # filter out objects that are already processed
    sha256s = list(metadata['sha256'].values)
    for sha256 in copy.copy(sha256s):
        if os.path.exists(os.path.join(opt.output_dir, 'features', feature_name, f'{sha256}.npz')):
            records.append({'sha256': sha256, f'feature_{feature_name}' : True})
            sha256s.remove(sha256)

    # extract features
    load_queue = Queue(maxsize=4)
    try:
        with ThreadPoolExecutor(max_workers=8) as loader_executor, \
            ThreadPoolExecutor(max_workers=8) as saver_executor:
            def loader(sha256):
                try:
                    with open(os.path.join(opt.output_dir, 'renders', sha256, 'transforms.json'), 'r') as f:
                        metadata = json.load(f)
                    frames = metadata['frames']
                    data = []
                    for datum in get_data(frames, sha256):
                        datum['image'] = transform(datum['image'])
                        data.append(datum)
                    positions = utils3d.io.read_ply(os.path.join(opt.output_dir, 'voxels', f'{sha256}.ply'))[0]
                    load_queue.put((sha256, data, positions))
                except Exception as e:
                    print(f"Error loading data for {sha256}: {e}")

            loader_executor.map(loader, sha256s)
            
            def saver(sha256, pack, patchtokens, uv):
                pack['patchtokens'] = F.grid_sample(
                    patchtokens,
                    uv.unsqueeze(1),
                    mode='bilinear',
                    align_corners=False,
                ).squeeze(2).permute(0, 2, 1).cpu().numpy()
                pack['patchtokens'] = np.mean(pack['patchtokens'], axis=0).astype(np.float16)
                save_path = os.path.join(opt.output_dir, 'features', feature_name, f'{sha256}.npz')
                np.savez_compressed(save_path, **pack)
                records.append({'sha256': sha256, f'feature_{feature_name}' : True})
                
            for _ in tqdm(range(len(sha256s)), desc="Extracting features"):
                sha256, data, positions = load_queue.get()
                positions = torch.from_numpy(positions).float().cuda()
                indices = ((positions + 0.5) * 64).long()
                assert torch.all(indices >= 0) and torch.all(indices < 64), "Some vertices are out of bounds"
                n_views = len(data)
                N = positions.shape[0]
                pack = {
                    'indices': indices.cpu().numpy().astype(np.uint8),
                }
                patchtokens_lst = []
                uv_lst = []
                for i in range(0, n_views, opt.batch_size):
                    batch_data = data[i:i+opt.batch_size]
                    bs = len(batch_data)
                    batch_images = torch.stack([d['image'] for d in batch_data]).cuda()
                    batch_extrinsics = torch.stack([d['extrinsics'] for d in batch_data]).cuda()
                    batch_intrinsics = torch.stack([d['intrinsics'] for d in batch_data]).cuda()
                    features = dinov2_model(batch_images, is_training=True)
                    uv = utils3d.torch.project_cv(positions, batch_extrinsics, batch_intrinsics)[0] * 2 - 1
                    patchtokens = features['x_prenorm'][:, dinov2_model.num_register_tokens + 1:].permute(0, 2, 1).reshape(bs, 1024, n_patch, n_patch)
                    patchtokens_lst.append(patchtokens)
                    uv_lst.append(uv)
                patchtokens = torch.cat(patchtokens_lst, dim=0)
                uv = torch.cat(uv_lst, dim=0)

                # save features
                saver_executor.submit(saver, sha256, pack, patchtokens, uv)
                
            saver_executor.shutdown(wait=True)
    except:
        print("Error happened during processing.")
        
    records = pd.DataFrame.from_records(records)
    records.to_csv(os.path.join(opt.output_dir, f'feature_{feature_name}_{opt.rank}.csv'), index=False)