jax-diffusion / app.py
carrycooldude's picture
Add app.py
d58b45f
raw
history blame
891 Bytes
# app.py
import gradio as gr
import jax
import jax.numpy as jnp
import numpy as np
from PIL import Image
# Dummy generator function β€” Replace this with your real model inference!
def generate_image(seed):
key = jax.random.PRNGKey(seed)
# Generate a fake "image" of size 64x64x3 (RGB)
img = jax.random.uniform(key, (64, 64, 3), minval=0, maxval=1.0)
img_np = np.array(img * 255, dtype=np.uint8)
return Image.fromarray(img_np)
# Define Gradio Interface
iface = gr.Interface(
fn=generate_image,
inputs=gr.Slider(0, 10000, value=42, step=1, label="Random Seed"),
outputs=gr.Image(type="pil", label="Generated Image"),
title="JAX Diffusion Demo",
description="🎨 Generate random diffusion samples using JAX! \n\n(Replace dummy function with your trained model.)",
theme="default",
live=False
)
if __name__ == "__main__":
iface.launch()