Spaces:
Running
Running
Commit
·
d58b45f
1
Parent(s):
decb75d
Add app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import jax
|
5 |
+
import jax.numpy as jnp
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
# Dummy generator function — Replace this with your real model inference!
|
10 |
+
def generate_image(seed):
|
11 |
+
key = jax.random.PRNGKey(seed)
|
12 |
+
# Generate a fake "image" of size 64x64x3 (RGB)
|
13 |
+
img = jax.random.uniform(key, (64, 64, 3), minval=0, maxval=1.0)
|
14 |
+
img_np = np.array(img * 255, dtype=np.uint8)
|
15 |
+
return Image.fromarray(img_np)
|
16 |
+
|
17 |
+
# Define Gradio Interface
|
18 |
+
iface = gr.Interface(
|
19 |
+
fn=generate_image,
|
20 |
+
inputs=gr.Slider(0, 10000, value=42, step=1, label="Random Seed"),
|
21 |
+
outputs=gr.Image(type="pil", label="Generated Image"),
|
22 |
+
title="JAX Diffusion Demo",
|
23 |
+
description="🎨 Generate random diffusion samples using JAX! \n\n(Replace dummy function with your trained model.)",
|
24 |
+
theme="default",
|
25 |
+
live=False
|
26 |
+
)
|
27 |
+
|
28 |
+
if __name__ == "__main__":
|
29 |
+
iface.launch()
|