Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer | |
import torch | |
model_id = "thrishala/mental_health_chatbot" | |
try: | |
# Load model with int8 quantization for CPU | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="cpu", | |
torch_dtype=torch.float16, # Use float16 for reduced memory | |
low_cpu_mem_usage=True, # Enable memory optimization | |
) | |
# Load tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
# Create pipeline with optimizations | |
pipe = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
torch_dtype=torch.float16, | |
) | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
exit() | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, # You can use this for initial instructions | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# 2. Construct the Prompt (Crucial!) | |
prompt = f"{system_message}\n" | |
for user_msg, bot_msg in history: | |
prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n" | |
prompt += f"User: {message}\nAssistant:" | |
# 3. Generate with the Pipeline | |
try: | |
response = pipe( | |
prompt, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
)[0]["generated_text"] | |
#Extract the bot's reply (adjust if your model format is different) | |
bot_response = response.split("Assistant:")[-1].strip() | |
yield bot_response | |
except Exception as e: | |
print(f"Error during generation: {e}") | |
yield "An error occurred during generation." #Handle generation errors. | |
# 4. Gradio Interface (No changes needed here) | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox( | |
value="You are a friendly and helpful mental health chatbot.", | |
label="System message", | |
), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |