import gradio as gr from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer import torch model_id = "thrishala/mental_health_chatbot" try: # Load model with int8 quantization for CPU model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cpu", torch_dtype=torch.float16, # Use float16 for reduced memory low_cpu_mem_usage=True, # Enable memory optimization ) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_id) # Create pipeline with optimizations pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.float16, ) except Exception as e: print(f"Error loading model: {e}") exit() def respond( message, history: list[tuple[str, str]], system_message, # You can use this for initial instructions max_tokens, temperature, top_p, ): # 2. Construct the Prompt (Crucial!) prompt = f"{system_message}\n" for user_msg, bot_msg in history: prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n" prompt += f"User: {message}\nAssistant:" # 3. Generate with the Pipeline try: response = pipe( prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, )[0]["generated_text"] #Extract the bot's reply (adjust if your model format is different) bot_response = response.split("Assistant:")[-1].strip() yield bot_response except Exception as e: print(f"Error during generation: {e}") yield "An error occurred during generation." #Handle generation errors. # 4. Gradio Interface (No changes needed here) demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox( value="You are a friendly and helpful mental health chatbot.", label="System message", ), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()