Spaces:
Sleeping
Sleeping
File size: 18,684 Bytes
c594756 b35040f 1b14f4f 4f4519e 3450cf6 841bbb9 ac511b5 a468d45 f4fb1c0 4f4519e c594756 4f4519e b35040f c594756 9d5df43 c3ffb57 c594756 c3ffb57 b35040f c594756 2cf25ca 2bfd556 4f4519e c594756 a468d45 c594756 a468d45 c594756 a468d45 c594756 0d7ce74 c594756 0d7ce74 c594756 a468d45 c594756 0d7ce74 c594756 a468d45 c594756 a468d45 c594756 a468d45 c594756 a468d45 c594756 a468d45 c594756 9e8b4c0 112f5f1 9e8b4c0 112f5f1 9e8b4c0 112f5f1 9e8b4c0 112f5f1 9e8b4c0 1428109 9e8b4c0 1428109 9901299 a468d45 9901299 52d788a 9e8b4c0 fd724e6 9e8b4c0 9901299 9e8b4c0 f4fb1c0 9e8b4c0 9901299 1e4432d 9901299 0d7ce74 9901299 0d7ce74 9901299 0f94ce5 9901299 2bfd556 9901299 2bfd556 9901299 1b51b36 0d7ce74 1b51b36 0d7ce74 1b51b36 1e4432d 1b51b36 9e8b4c0 1428109 9e8b4c0 1e4432d 9e8b4c0 1e4432d 9e8b4c0 1b51b36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
import dash
from dash import dcc, html, Input, Output, State, callback
import dash_bootstrap_components as dbc
import base64
import io
import os
from snac import SNAC
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import google.generativeai as genai
import re
import logging
import numpy as np
from pydub import AudioSegment
from docx import Document
import PyPDF2
from tqdm import tqdm
import soundfile as sf
# Initialize logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load models
print("Loading SNAC model...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(device)
model_name = "canopylabs/orpheus-3b-0.1-ft"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
print(f"Orpheus model loaded to {device}")
# Available voices and emotive tags
VOICES = ["tara", "leah", "jess", "leo", "dan", "mia", "zac", "zoe"]
EMOTIVE_TAGS = ["<laugh>", "<chuckle>", "<sigh>", "<cough>", "<sniffle>", "<groan>", "<yawn>", "<gasp>"]
# Initialize Dash app
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
app.layout = dbc.Container([
dbc.Row([
dbc.Col([
html.H1("Orpheus Text-to-Speech", className="text-center mb-4"),
], width=12),
]),
dbc.Row([
dbc.Col([
dbc.Input(id="host1-name", placeholder="Enter name of first host", className="mb-2"),
dbc.Input(id="host2-name", placeholder="Enter name of second host", className="mb-2"),
dbc.Input(id="podcast-name", placeholder="Enter podcast name", className="mb-2"),
dbc.Input(id="podcast-topic", placeholder="Enter podcast topic", className="mb-2"),
dbc.Textarea(id="prompt", placeholder="Enter your text here...", rows=5, className="mb-2"),
dcc.Upload(
id='upload-file',
children=html.Div(['Drag and Drop or ', html.A('Select a File')]),
style={
'width': '100%',
'height': '60px',
'lineHeight': '60px',
'borderWidth': '1px',
'borderStyle': 'dashed',
'borderRadius': '5px',
'textAlign': 'center',
'margin': '10px 0'
},
),
html.Label("Duration (minutes)", className="mt-2"),
dcc.Slider(id="duration", min=1, max=60, value=5, step=1, marks={1: '1', 30: '30', 60: '60'}, className="mb-2"),
html.Label("Number of Hosts", className="mt-2"),
dbc.RadioItems(
id="num-hosts",
options=[{"label": i, "value": i} for i in ["1", "2"]],
value="1",
inline=True,
className="mb-2"
),
dbc.Button("Generate Podcast Script", id="generate-script-btn", color="primary", className="mb-2"),
dbc.Spinner(html.Div(id="script-loading"), color="primary"),
], width=6),
dbc.Col([
dbc.Textarea(id="script-output", placeholder="Generated script will appear here...", rows=10, className="mb-2"),
dbc.Button("Clear", id="clear-btn", color="secondary", className="mb-2 d-block"),
html.Label("Voice 1", className="mt-3"),
dcc.Dropdown(id="voice1", options=[{"label": v, "value": v} for v in VOICES], value="tara", className="mb-2"),
html.Label("Voice 2", className="mt-2"),
dcc.Dropdown(id="voice2", options=[{"label": v, "value": v} for v in VOICES], value="zac", className="mb-2"),
dbc.Button("Generate Audio", id="generate-audio-btn", color="success", className="mb-2"),
dbc.Spinner(html.Div(id="audio-loading"), color="primary"),
html.Div(id="audio-output"),
dbc.Button("Advanced Settings", id="advanced-settings-toggle", color="info", className="mb-2"),
dbc.Collapse([
html.Label("Temperature", className="mt-2"),
dcc.Slider(id="temperature", min=0.1, max=1.5, value=0.6, step=0.05, marks={0.1: '0.1', 0.8: '0.8', 1.5: '1.5'}, className="mb-2"),
html.Label("Top P", className="mt-2"),
dcc.Slider(id="top-p", min=0.1, max=1.0, value=0.9, step=0.05, marks={0.1: '0.1', 0.5: '0.5', 1.0: '1.0'}, className="mb-2"),
html.Label("Repetition Penalty", className="mt-2"),
dcc.Slider(id="repetition-penalty", min=1.0, max=2.0, value=1.2, step=0.1, marks={1.0: '1.0', 1.5: '1.5', 2.0: '2.0'}, className="mb-2"),
html.Label("Max New Tokens", className="mt-2"),
dcc.Slider(id="max-new-tokens", min=100, max=16384, value=4096, step=100, marks={100: '100', 8192: '8192', 16384: '16384'}, className="mb-2"),
], id="advanced-settings", is_open=False),
], width=6),
]),
dcc.Store(id='generated-script'),
dcc.Store(id='generated-audio'),
])
def process_prompt(prompt, voice, tokenizer, device):
prompt = f"{voice}: {prompt}"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
start_token = torch.tensor([[128259]], dtype=torch.int64)
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64)
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
attention_mask = torch.ones_like(modified_input_ids)
return modified_input_ids.to(device), attention_mask.to(device)
def parse_output(generated_ids):
token_to_find = 128257
token_to_remove = 128258
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
if len(token_indices[1]) > 0:
last_occurrence_idx = token_indices[1][-1].item()
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
else:
cropped_tensor = generated_ids
processed_rows = []
for row in cropped_tensor:
masked_row = row[row != token_to_remove]
processed_rows.append(masked_row)
code_lists = []
for row in processed_rows:
row_length = row.size(0)
new_length = (row_length // 7) * 7
trimmed_row = row[:new_length]
trimmed_row = [t - 128266 for t in trimmed_row]
code_lists.append(trimmed_row)
return code_lists[0]
def redistribute_codes(code_list, snac_model):
device = next(snac_model.parameters()).device # Get the device of SNAC model
layer_1 = []
layer_2 = []
layer_3 = []
for i in range((len(code_list)+1)//7):
layer_1.append(code_list[7*i])
layer_2.append(code_list[7*i+1]-4096)
layer_3.append(code_list[7*i+2]-(2*4096))
layer_3.append(code_list[7*i+3]-(3*4096))
layer_2.append(code_list[7*i+4]-(4*4096))
layer_3.append(code_list[7*i+5]-(5*4096))
layer_3.append(code_list[7*i+6]-(6*4096))
codes = [
torch.tensor(layer_1, device=device).unsqueeze(0),
torch.tensor(layer_2, device=device).unsqueeze(0),
torch.tensor(layer_3, device=device).unsqueeze(0)
]
audio_hat = snac_model.decode(codes)
return audio_hat.detach().squeeze().cpu().numpy() # Always return CPU numpy array
def detect_silence(audio, threshold=0.005, min_silence_duration=1.3):
sample_rate = 24000 # Adjust if your sample rate is different
is_silent = np.abs(audio) < threshold
silent_regions = np.where(is_silent)[0]
silence_starts = []
silence_ends = []
if len(silent_regions) > 0:
silence_starts.append(silent_regions[0])
for i in range(1, len(silent_regions)):
if silent_regions[i] - silent_regions[i-1] > 1:
silence_ends.append(silent_regions[i-1])
silence_starts.append(silent_regions[i])
silence_ends.append(silent_regions[-1])
long_silences = [(start, end) for start, end in zip(silence_starts, silence_ends)
if (end - start) / sample_rate >= min_silence_duration]
return long_silences
def generate_audio(script_output, voice1, voice2, num_hosts, temperature, top_p, repetition_penalty, max_new_tokens):
try:
paragraphs = script_output.split('\n\n') # Split by double newline
audio_samples = []
for i, paragraph in tqdm(enumerate(paragraphs), total=len(paragraphs), desc="Generating audio"):
if not paragraph.strip():
continue
voice = voice1 if num_hosts == "1" or i % 2 == 0 else voice2
input_ids, attention_mask = process_prompt(paragraph, voice, tokenizer, device)
with torch.no_grad():
generated_ids = model.generate(
input_ids,
attention_mask=attention_mask,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
max_new_tokens=max_new_tokens,
num_return_sequences=1,
eos_token_id=128258,
)
code_list = parse_output(generated_ids)
paragraph_audio = redistribute_codes(code_list, snac_model)
# Add silence detection here
silences = detect_silence(paragraph_audio)
if silences:
# Trim the audio at the last detected silence
paragraph_audio = paragraph_audio[:silences[-1][1]]
audio_samples.append(paragraph_audio)
final_audio = np.concatenate(audio_samples)
# Normalize the audio
final_audio = np.int16(final_audio / np.max(np.abs(final_audio)) * 32767)
return final_audio
except Exception as e:
logger.error(f"Error generating speech: {str(e)}")
return None
@callback(
Output("script-output", "value"),
Output("audio-output", "children"),
Output("advanced-settings", "is_open"),
Output("prompt", "value"),
Output("script-loading", "children"),
Output("audio-loading", "children"),
Input("generate-script-btn", "n_clicks"),
Input("generate-audio-btn", "n_clicks"),
Input("advanced-settings-toggle", "n_clicks"),
Input("clear-btn", "n_clicks"),
State("host1-name", "value"),
State("host2-name", "value"),
State("podcast-name", "value"),
State("podcast-topic", "value"),
State("prompt", "value"),
State("upload-file", "contents"),
State("duration", "value"),
State("num-hosts", "value"),
State("script-output", "value"),
State("voice1", "value"),
State("voice2", "value"),
State("temperature", "value"),
State("top-p", "value"),
State("repetition-penalty", "value"),
State("max-new-tokens", "value"),
State("advanced-settings", "is_open"),
prevent_initial_call=True
)
def combined_callback(generate_script_clicks, generate_audio_clicks, advanced_settings_clicks, clear_clicks,
host1_name, host2_name, podcast_name, podcast_topic, prompt, uploaded_file, duration, num_hosts,
script_output, voice1, voice2, temperature, top_p, repetition_penalty, max_new_tokens, is_advanced_open):
ctx = dash.callback_context
if not ctx.triggered:
return dash.no_update, dash.no_update, dash.no_update, dash.no_update, "", ""
trigger_id = ctx.triggered[0]['prop_id'].split('.')[0]
if trigger_id == "advanced-settings-toggle":
return dash.no_update, dash.no_update, not is_advanced_open, dash.no_update, "", ""
if trigger_id == "generate-script-btn":
try:
api_key = os.environ.get("GEMINI_API_KEY")
if not api_key:
raise ValueError("Gemini API key not found in environment variables")
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-2.5-pro-preview-03-25')
combined_content = prompt or ""
if uploaded_file:
content_type, content_string = uploaded_file.split(',')
decoded = base64.b64decode(content_string)
file_bytes = io.BytesIO(decoded)
file_bytes.seek(0)
if file_bytes.read(4) == b'%PDF':
file_bytes.seek(0)
pdf_reader = PyPDF2.PdfReader(file_bytes)
file_content = "\n".join([page.extract_text() for page in pdf_reader.pages])
else:
file_bytes.seek(0)
try:
file_content = file_bytes.read().decode('utf-8')
except UnicodeDecodeError:
file_bytes.seek(0)
try:
doc = Document(file_bytes)
file_content = "\n".join([para.text for para in doc.paragraphs])
except:
raise ValueError("Unsupported file type or corrupted file")
combined_content += "\n" + file_content if combined_content else file_content
num_hosts = int(num_hosts) if num_hosts else 1
prompt_template = f"""
Create a podcast script for {num_hosts} {'person' if num_hosts == 1 else 'people'} discussing:
{combined_content}
Duration: {duration} minutes. Include natural speech, humor, and occasional off-topic thoughts.
Use speech fillers like um, ah. Vary emotional tone.
Format: {'Monologue' if num_hosts == 1 else 'Alternating dialogue'} without speaker labels.
Separate {'paragraphs' if num_hosts == 1 else 'lines'} with blank lines.
If the number of {num_hosts} is 1 then each paragraph will be no more than 3 sentences each
Only provide the dialog for text to speech.
Only use these emotion tags in angle brackets: {', '.join(EMOTIVE_TAGS)}.
-Example: "I can't believe I stayed up all night <yawn> only to find out the meeting was canceled <groan>."
Ensure content flows naturally and stays on topic. Match the script length to {duration} minutes.
Do not include speaker labels like "jane:" or "john:" before dialogue.
The intro always includes the ({host1_name} and/or {host2_name}) if it exists and should be in the same paragraph.
The outro always includes the ({host1_name} and/or {host2_name}) if it exists and should be in the same paragraph
Do not include these types of transitions in the intro, outro or between paragraphs for example: "Intro Music fades in...". Its just dialog.
Keep each speaker's entire monologue in a single paragraph, regardless of length if the number of hosts is not 1.
Start a new paragraph only when switching to a different speaker if the number of hosts is not 1.
Maintain natural conversation flow and speech patterns within each monologue.
Use context clues or subtle references to indicate who is speaking without explicit labels if the number of hosts is not 1.
Use speaker names ({host1_name} and/or {host2_name}) sparingly, only when necessary for clarity or emphasis. Avoid starting every line with the other person's name.
Rely more on context and speech patterns to indicate who is speaking, rather than always stating names.
Use names primarily for transitions sparingly, definitely with agreements, or to draw attention to a specific point, not as a constant form of address.
{'Make sure the script is a monologue for one person.' if num_hosts == 1 else f'Ensure the dialogue alternates between two distinct voices, with {host1_name} speaking on odd-numbered lines and {host2_name} on even-numbered lines.'}
Always include intro with the speaker name and its the podcast name "{podcast_name}" in intoduce the topic of the podcast with "{podcast_topic}".
Incorporate the podcast name and topic naturally into the intro and outro, and ensure the content stays relevant to the specified topic throughout the script.
"""
response = model.generate_content(prompt_template)
return re.sub(r'[^a-zA-Z0-9\s.,?!<>]', '', response.text), dash.no_update, dash.no_update, dash.no_update, "", ""
except Exception as e:
logger.error(f"Error generating podcast script: {str(e)}")
return f"Error: {str(e)}", dash.no_update, dash.no_update, dash.no_update, "", ""
elif trigger_id == "generate-audio-btn":
if not script_output.strip():
return dash.no_update, html.Div("No audio generated yet."), dash.no_update, dash.no_update, "", ""
final_audio = generate_audio(script_output, voice1, voice2, num_hosts, temperature, top_p, repetition_penalty, max_new_tokens)
if final_audio is not None:
# Convert to WAV format
buffer = io.BytesIO()
sf.write(buffer, final_audio, 24000, format='WAV', subtype='PCM_16')
buffer.seek(0)
# Convert to base64 for audio playback
audio_base64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
src = f"data:audio/wav;base64,{audio_base64}"
# Log audio file size
logger.info(f"Generated audio file size: {len(audio_base64)} bytes")
# Create a download link for the audio
download_link = html.A("Download Audio", href=src, download="generated_audio.wav")
return dash.no_update, html.Div([
html.Audio(src=src, controls=True),
html.Br(),
download_link
]), dash.no_update, dash.no_update, "", ""
else:
logger.error("Failed to generate audio")
return dash.no_update, html.Div("Error generating audio"), dash.no_update, dash.no_update, "", ""
return dash.no_update, dash.no_update, dash.no_update, dash.no_update, "", ""
# Run the app
if __name__ == '__main__':
print("Starting the Dash application...")
app.run(debug=True, host='0.0.0.0', port=7860)
print("Dash application has finished running.") |