File size: 18,684 Bytes
c594756
 
 
 
 
 
b35040f
 
 
1b14f4f
 
4f4519e
3450cf6
841bbb9
ac511b5
 
a468d45
f4fb1c0
4f4519e
c594756
4f4519e
 
b35040f
c594756
9d5df43
c3ffb57
c594756
c3ffb57
 
 
 
 
 
 
 
 
b35040f
c594756
2cf25ca
2bfd556
4f4519e
c594756
 
 
 
 
 
a468d45
 
 
 
 
c594756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a468d45
c594756
a468d45
c594756
 
 
 
 
 
 
 
0d7ce74
c594756
 
 
0d7ce74
 
c594756
a468d45
c594756
 
0d7ce74
c594756
a468d45
c594756
a468d45
c594756
a468d45
c594756
a468d45
c594756
a468d45
c594756
 
 
 
 
 
 
 
9e8b4c0
 
 
 
 
 
 
 
 
 
 
112f5f1
 
9e8b4c0
 
 
 
112f5f1
9e8b4c0
 
 
 
 
112f5f1
9e8b4c0
 
 
 
112f5f1
9e8b4c0
 
 
 
 
 
 
 
 
1428109
9e8b4c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1428109
9901299
 
 
 
 
a468d45
9901299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52d788a
9e8b4c0
fd724e6
9e8b4c0
 
 
 
 
9901299
 
 
 
 
9e8b4c0
 
f4fb1c0
9e8b4c0
9901299
 
 
1e4432d
9901299
 
 
 
 
0d7ce74
 
9901299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d7ce74
9901299
 
 
0f94ce5
 
 
9901299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bfd556
9901299
2bfd556
9901299
 
 
 
 
 
 
 
 
 
1b51b36
 
 
 
 
 
 
 
 
0d7ce74
1b51b36
 
0d7ce74
1b51b36
1e4432d
 
 
1b51b36
9e8b4c0
1428109
9e8b4c0
 
 
 
 
 
1e4432d
9e8b4c0
1e4432d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e8b4c0
1b51b36
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import dash
from dash import dcc, html, Input, Output, State, callback
import dash_bootstrap_components as dbc
import base64
import io
import os
from snac import SNAC
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import google.generativeai as genai
import re
import logging
import numpy as np
from pydub import AudioSegment
from docx import Document
import PyPDF2
from tqdm import tqdm
import soundfile as sf

# Initialize logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Initialize device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load models
print("Loading SNAC model...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(device)

model_name = "canopylabs/orpheus-3b-0.1-ft"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
print(f"Orpheus model loaded to {device}")

# Available voices and emotive tags
VOICES = ["tara", "leah", "jess", "leo", "dan", "mia", "zac", "zoe"]
EMOTIVE_TAGS = ["<laugh>", "<chuckle>", "<sigh>", "<cough>", "<sniffle>", "<groan>", "<yawn>", "<gasp>"]

# Initialize Dash app
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])

app.layout = dbc.Container([
    dbc.Row([
        dbc.Col([
            html.H1("Orpheus Text-to-Speech", className="text-center mb-4"),
        ], width=12),
    ]),
    dbc.Row([
        dbc.Col([
            dbc.Input(id="host1-name", placeholder="Enter name of first host", className="mb-2"),
            dbc.Input(id="host2-name", placeholder="Enter name of second host", className="mb-2"),
            dbc.Input(id="podcast-name", placeholder="Enter podcast name", className="mb-2"),
            dbc.Input(id="podcast-topic", placeholder="Enter podcast topic", className="mb-2"),
            dbc.Textarea(id="prompt", placeholder="Enter your text here...", rows=5, className="mb-2"),
            dcc.Upload(
                id='upload-file',
                children=html.Div(['Drag and Drop or ', html.A('Select a File')]),
                style={
                    'width': '100%',
                    'height': '60px',
                    'lineHeight': '60px',
                    'borderWidth': '1px',
                    'borderStyle': 'dashed',
                    'borderRadius': '5px',
                    'textAlign': 'center',
                    'margin': '10px 0'
                },
            ),
            html.Label("Duration (minutes)", className="mt-2"),
            dcc.Slider(id="duration", min=1, max=60, value=5, step=1, marks={1: '1', 30: '30', 60: '60'}, className="mb-2"),
            html.Label("Number of Hosts", className="mt-2"),
            dbc.RadioItems(
                id="num-hosts",
                options=[{"label": i, "value": i} for i in ["1", "2"]],
                value="1",
                inline=True,
                className="mb-2"
            ),
            dbc.Button("Generate Podcast Script", id="generate-script-btn", color="primary", className="mb-2"),
            dbc.Spinner(html.Div(id="script-loading"), color="primary"),
        ], width=6),
        dbc.Col([
            dbc.Textarea(id="script-output", placeholder="Generated script will appear here...", rows=10, className="mb-2"),
            dbc.Button("Clear", id="clear-btn", color="secondary", className="mb-2 d-block"),
            html.Label("Voice 1", className="mt-3"),
            dcc.Dropdown(id="voice1", options=[{"label": v, "value": v} for v in VOICES], value="tara", className="mb-2"),
            html.Label("Voice 2", className="mt-2"),
            dcc.Dropdown(id="voice2", options=[{"label": v, "value": v} for v in VOICES], value="zac", className="mb-2"),
            dbc.Button("Generate Audio", id="generate-audio-btn", color="success", className="mb-2"),
            dbc.Spinner(html.Div(id="audio-loading"), color="primary"),
            html.Div(id="audio-output"),
            dbc.Button("Advanced Settings", id="advanced-settings-toggle", color="info", className="mb-2"),
            dbc.Collapse([
                html.Label("Temperature", className="mt-2"),
                dcc.Slider(id="temperature", min=0.1, max=1.5, value=0.6, step=0.05, marks={0.1: '0.1', 0.8: '0.8', 1.5: '1.5'}, className="mb-2"),
                html.Label("Top P", className="mt-2"),
                dcc.Slider(id="top-p", min=0.1, max=1.0, value=0.9, step=0.05, marks={0.1: '0.1', 0.5: '0.5', 1.0: '1.0'}, className="mb-2"),
                html.Label("Repetition Penalty", className="mt-2"),
                dcc.Slider(id="repetition-penalty", min=1.0, max=2.0, value=1.2, step=0.1, marks={1.0: '1.0', 1.5: '1.5', 2.0: '2.0'}, className="mb-2"),
                html.Label("Max New Tokens", className="mt-2"),
                dcc.Slider(id="max-new-tokens", min=100, max=16384, value=4096, step=100, marks={100: '100', 8192: '8192', 16384: '16384'}, className="mb-2"),
            ], id="advanced-settings", is_open=False),
        ], width=6),
    ]),
    dcc.Store(id='generated-script'),
    dcc.Store(id='generated-audio'),
])

def process_prompt(prompt, voice, tokenizer, device):
    prompt = f"{voice}: {prompt}"
    input_ids = tokenizer(prompt, return_tensors="pt").input_ids
    
    start_token = torch.tensor([[128259]], dtype=torch.int64)
    end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64)
    
    modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
    attention_mask = torch.ones_like(modified_input_ids)
    
    return modified_input_ids.to(device), attention_mask.to(device)

def parse_output(generated_ids):
    token_to_find = 128257
    token_to_remove = 128258
    
    token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)

    if len(token_indices[1]) > 0:
        last_occurrence_idx = token_indices[1][-1].item()
        cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
    else:
        cropped_tensor = generated_ids

    processed_rows = []
    for row in cropped_tensor:
        masked_row = row[row != token_to_remove]
        processed_rows.append(masked_row)

    code_lists = []
    for row in processed_rows:
        row_length = row.size(0)
        new_length = (row_length // 7) * 7
        trimmed_row = row[:new_length]
        trimmed_row = [t - 128266 for t in trimmed_row]
        code_lists.append(trimmed_row)
        
    return code_lists[0]

def redistribute_codes(code_list, snac_model):
    device = next(snac_model.parameters()).device  # Get the device of SNAC model
    
    layer_1 = []
    layer_2 = []
    layer_3 = []
    for i in range((len(code_list)+1)//7):
        layer_1.append(code_list[7*i])
        layer_2.append(code_list[7*i+1]-4096)
        layer_3.append(code_list[7*i+2]-(2*4096))
        layer_3.append(code_list[7*i+3]-(3*4096))
        layer_2.append(code_list[7*i+4]-(4*4096))
        layer_3.append(code_list[7*i+5]-(5*4096))
        layer_3.append(code_list[7*i+6]-(6*4096))
    
    codes = [
        torch.tensor(layer_1, device=device).unsqueeze(0),
        torch.tensor(layer_2, device=device).unsqueeze(0),
        torch.tensor(layer_3, device=device).unsqueeze(0)
    ]
    
    audio_hat = snac_model.decode(codes)
    return audio_hat.detach().squeeze().cpu().numpy()  # Always return CPU numpy array

def detect_silence(audio, threshold=0.005, min_silence_duration=1.3):
    sample_rate = 24000  # Adjust if your sample rate is different
    is_silent = np.abs(audio) < threshold
    silent_regions = np.where(is_silent)[0]
    
    silence_starts = []
    silence_ends = []
    
    if len(silent_regions) > 0:
        silence_starts.append(silent_regions[0])
        for i in range(1, len(silent_regions)):
            if silent_regions[i] - silent_regions[i-1] > 1:
                silence_ends.append(silent_regions[i-1])
                silence_starts.append(silent_regions[i])
        silence_ends.append(silent_regions[-1])
    
    long_silences = [(start, end) for start, end in zip(silence_starts, silence_ends) 
                     if (end - start) / sample_rate >= min_silence_duration]
    
    return long_silences

def generate_audio(script_output, voice1, voice2, num_hosts, temperature, top_p, repetition_penalty, max_new_tokens):
    try:
        paragraphs = script_output.split('\n\n')  # Split by double newline
        audio_samples = []
        
        for i, paragraph in tqdm(enumerate(paragraphs), total=len(paragraphs), desc="Generating audio"):
            if not paragraph.strip():
                continue
            
            voice = voice1 if num_hosts == "1" or i % 2 == 0 else voice2
            
            input_ids, attention_mask = process_prompt(paragraph, voice, tokenizer, device)
            
            with torch.no_grad():
                generated_ids = model.generate(
                    input_ids,
                    attention_mask=attention_mask,
                    do_sample=True,
                    temperature=temperature,
                    top_p=top_p,
                    repetition_penalty=repetition_penalty,
                    max_new_tokens=max_new_tokens,
                    num_return_sequences=1,
                    eos_token_id=128258,
                )
            
            code_list = parse_output(generated_ids)
            
            paragraph_audio = redistribute_codes(code_list, snac_model)
            
            # Add silence detection here
            silences = detect_silence(paragraph_audio)
            if silences:
                # Trim the audio at the last detected silence
                paragraph_audio = paragraph_audio[:silences[-1][1]]
            
            audio_samples.append(paragraph_audio)
        
        final_audio = np.concatenate(audio_samples)
        
        # Normalize the audio
        final_audio = np.int16(final_audio / np.max(np.abs(final_audio)) * 32767)
        
        return final_audio
    except Exception as e:
        logger.error(f"Error generating speech: {str(e)}")
        return None

@callback(
    Output("script-output", "value"),
    Output("audio-output", "children"),
    Output("advanced-settings", "is_open"),
    Output("prompt", "value"),
    Output("script-loading", "children"),
    Output("audio-loading", "children"),
    Input("generate-script-btn", "n_clicks"),
    Input("generate-audio-btn", "n_clicks"),
    Input("advanced-settings-toggle", "n_clicks"),
    Input("clear-btn", "n_clicks"),
    State("host1-name", "value"),
    State("host2-name", "value"),
    State("podcast-name", "value"),
    State("podcast-topic", "value"),
    State("prompt", "value"),
    State("upload-file", "contents"),
    State("duration", "value"),
    State("num-hosts", "value"),
    State("script-output", "value"),
    State("voice1", "value"),
    State("voice2", "value"),
    State("temperature", "value"),
    State("top-p", "value"),
    State("repetition-penalty", "value"),
    State("max-new-tokens", "value"),
    State("advanced-settings", "is_open"),
    prevent_initial_call=True
)
def combined_callback(generate_script_clicks, generate_audio_clicks, advanced_settings_clicks, clear_clicks,
                      host1_name, host2_name, podcast_name, podcast_topic, prompt, uploaded_file, duration, num_hosts,
                      script_output, voice1, voice2, temperature, top_p, repetition_penalty, max_new_tokens, is_advanced_open):
    ctx = dash.callback_context
    if not ctx.triggered:
        return dash.no_update, dash.no_update, dash.no_update, dash.no_update, "", ""

    trigger_id = ctx.triggered[0]['prop_id'].split('.')[0]

    if trigger_id == "advanced-settings-toggle":
        return dash.no_update, dash.no_update, not is_advanced_open, dash.no_update, "", ""

    if trigger_id == "generate-script-btn":
        try:
            api_key = os.environ.get("GEMINI_API_KEY")
            if not api_key:
                raise ValueError("Gemini API key not found in environment variables")
            
            genai.configure(api_key=api_key)
            model = genai.GenerativeModel('gemini-2.5-pro-preview-03-25')
            
            combined_content = prompt or ""
            
            if uploaded_file:
                content_type, content_string = uploaded_file.split(',')
                decoded = base64.b64decode(content_string)
                file_bytes = io.BytesIO(decoded)
                
                file_bytes.seek(0)
                if file_bytes.read(4) == b'%PDF':
                    file_bytes.seek(0)
                    pdf_reader = PyPDF2.PdfReader(file_bytes)
                    file_content = "\n".join([page.extract_text() for page in pdf_reader.pages])
                else:
                    file_bytes.seek(0)
                    try:
                        file_content = file_bytes.read().decode('utf-8')
                    except UnicodeDecodeError:
                        file_bytes.seek(0)
                        try:
                            doc = Document(file_bytes)
                            file_content = "\n".join([para.text for para in doc.paragraphs])
                        except:
                            raise ValueError("Unsupported file type or corrupted file")

                combined_content += "\n" + file_content if combined_content else file_content
            
            num_hosts = int(num_hosts) if num_hosts else 1
            
            prompt_template = f"""
            Create a podcast script for {num_hosts} {'person' if num_hosts == 1 else 'people'} discussing:
            {combined_content}
            
            Duration: {duration} minutes. Include natural speech, humor, and occasional off-topic thoughts.
            Use speech fillers like um, ah. Vary emotional tone.
            
            Format: {'Monologue' if num_hosts == 1 else 'Alternating dialogue'} without speaker labels.
            Separate {'paragraphs' if num_hosts == 1 else 'lines'} with blank lines.
            If the number of {num_hosts} is 1 then each paragraph will be no more than 3 sentences each
            Only provide the dialog for text to speech.
            Only use these emotion tags in angle brackets: {', '.join(EMOTIVE_TAGS)}.
            -Example: "I can't believe I stayed up all night <yawn> only to find out the meeting was canceled <groan>."
            Ensure content flows naturally and stays on topic. Match the script length to {duration} minutes.
            Do not include speaker labels like "jane:" or "john:" before dialogue.
            The intro always includes the ({host1_name} and/or {host2_name}) if it exists and should be in the same paragraph. 
            The outro always includes the ({host1_name} and/or {host2_name}) if it exists and should be in the same paragraph
            Do not include these types of transitions in the intro, outro or between paragraphs for example: "Intro Music fades in...".  Its just dialog.
            Keep each speaker's entire monologue in a single paragraph, regardless of length if the number of hosts is not 1.
            Start a new paragraph only when switching to a different speaker if the number of hosts is not 1.
            Maintain natural conversation flow and speech patterns within each monologue.
            Use context clues or subtle references to indicate who is speaking without explicit labels if the number of hosts is not 1.
            Use speaker names ({host1_name} and/or {host2_name}) sparingly, only when necessary for clarity or emphasis. Avoid starting every line with the other person's name.
            Rely more on context and speech patterns to indicate who is speaking, rather than always stating names.
            Use names primarily for transitions sparingly, definitely with agreements, or to draw attention to a specific point, not as a constant form of address.
            {'Make sure the script is a monologue for one person.' if num_hosts == 1 else f'Ensure the dialogue alternates between two distinct voices, with {host1_name} speaking on odd-numbered lines and {host2_name} on even-numbered lines.'}
            Always include intro with the speaker name and its the podcast name "{podcast_name}" in intoduce the topic of the podcast with "{podcast_topic}".
            Incorporate the podcast name and topic naturally into the intro and outro, and ensure the content stays relevant to the specified topic throughout the script.
            """
            
            response = model.generate_content(prompt_template)
            return re.sub(r'[^a-zA-Z0-9\s.,?!<>]', '', response.text), dash.no_update, dash.no_update, dash.no_update, "", ""
        except Exception as e:
            logger.error(f"Error generating podcast script: {str(e)}")
            return f"Error: {str(e)}", dash.no_update, dash.no_update, dash.no_update, "", ""

    elif trigger_id == "generate-audio-btn":
        if not script_output.strip():
            return dash.no_update, html.Div("No audio generated yet."), dash.no_update, dash.no_update, "", ""
        
        final_audio = generate_audio(script_output, voice1, voice2, num_hosts, temperature, top_p, repetition_penalty, max_new_tokens)
        
        if final_audio is not None:
            # Convert to WAV format
            buffer = io.BytesIO()
            sf.write(buffer, final_audio, 24000, format='WAV', subtype='PCM_16')
            buffer.seek(0)
            
            # Convert to base64 for audio playback
            audio_base64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
            src = f"data:audio/wav;base64,{audio_base64}"
            
            # Log audio file size
            logger.info(f"Generated audio file size: {len(audio_base64)} bytes")
            
            # Create a download link for the audio
            download_link = html.A("Download Audio", href=src, download="generated_audio.wav")
            
            return dash.no_update, html.Div([
                html.Audio(src=src, controls=True),
                html.Br(),
                download_link
            ]), dash.no_update, dash.no_update, "", ""
        else:
            logger.error("Failed to generate audio")
            return dash.no_update, html.Div("Error generating audio"), dash.no_update, dash.no_update, "", ""
        return dash.no_update, dash.no_update, dash.no_update, dash.no_update, "", ""

# Run the app
if __name__ == '__main__':
    print("Starting the Dash application...")
    app.run(debug=True, host='0.0.0.0', port=7860)
    print("Dash application has finished running.")