Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -4,8 +4,6 @@ import torch
|
|
4 |
import gradio as gr
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
from huggingface_hub import snapshot_download
|
7 |
-
import google.generativeai as genai
|
8 |
-
import re
|
9 |
import logging
|
10 |
|
11 |
logging.basicConfig(level=logging.INFO)
|
@@ -24,39 +22,11 @@ model.to(device)
|
|
24 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
25 |
print(f"Orpheus model loaded to {device}")
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
combined_content = content or ""
|
34 |
-
if uploaded_file:
|
35 |
-
file_content = uploaded_file.read().decode('utf-8')
|
36 |
-
combined_content += "\n" + file_content if combined_content else file_content
|
37 |
-
|
38 |
-
prompt = f"""
|
39 |
-
Create a podcast script for {'one person' if num_hosts == 1 else 'two people'} discussing:
|
40 |
-
{combined_content}
|
41 |
-
|
42 |
-
Duration: {duration} minutes. Include natural speech, humor, and occasional off-topic thoughts.
|
43 |
-
Use speech fillers like um, ah. Vary emotional tone.
|
44 |
-
|
45 |
-
Format: {'Monologue' if num_hosts == 1 else 'Alternating dialogue'} without speaker labels.
|
46 |
-
Separate {'paragraphs' if num_hosts == 1 else 'lines'} with blank lines.
|
47 |
-
|
48 |
-
Use emotion tags in angle brackets: <laugh>, <sigh>, <chuckle>, <cough>, <sniffle>, <groan>, <yawn>, <gasp>.
|
49 |
-
|
50 |
-
Example: "I can't believe I stayed up all night <yawn> only to find out the meeting was canceled <groan>."
|
51 |
-
|
52 |
-
Ensure content flows naturally and stays on topic. Match the script length to {duration} minutes.
|
53 |
-
"""
|
54 |
-
|
55 |
-
response = model.generate_content(prompt)
|
56 |
-
return re.sub(r'[^a-zA-Z0-9\s.,?!<>]', '', response.text)
|
57 |
-
except Exception as e:
|
58 |
-
logger.error(f"Error generating podcast script: {str(e)}")
|
59 |
-
raise
|
60 |
|
61 |
def process_prompt(prompt, voice, tokenizer, device):
|
62 |
prompt = f"{voice}: {prompt}"
|
@@ -97,6 +67,26 @@ def parse_output(generated_ids):
|
|
97 |
|
98 |
return code_lists[0]
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
@spaces.GPU()
|
101 |
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
|
102 |
if not text.strip():
|
@@ -132,51 +122,64 @@ def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new
|
|
132 |
return None
|
133 |
|
134 |
with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
|
135 |
-
gr.Markdown("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
with gr.Row():
|
138 |
-
with gr.Column(scale=1):
|
139 |
-
gemini_api_key = gr.Textbox(label="Gemini API Key", type="password")
|
140 |
-
content = gr.Textbox(label="Content", lines=8)
|
141 |
-
uploaded_file = gr.File(label="Upload File")
|
142 |
-
duration = gr.Slider(minimum=1, maximum=60, value=5, step=1, label="Duration (minutes)")
|
143 |
-
num_hosts = gr.Radio(["1", "2"], label="Number of Hosts", value="1")
|
144 |
-
generate_script_btn = gr.Button("Generate Podcast Script")
|
145 |
-
|
146 |
with gr.Column(scale=2):
|
147 |
-
|
148 |
-
voice = gr.Dropdown(
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
-
with gr.
|
151 |
-
temperature = gr.Slider(
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
with gr.Row():
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
submit_btn = gr.Button("Generate Speech")
|
159 |
-
clear_btn = gr.Button("Clear")
|
160 |
|
161 |
with gr.Column(scale=2):
|
162 |
audio_output = gr.Audio(label="Generated Speech", type="numpy")
|
163 |
|
164 |
-
generate_script_btn.click(
|
165 |
-
fn=generate_podcast_script,
|
166 |
-
inputs=[gemini_api_key, content, uploaded_file, duration, num_hosts],
|
167 |
-
outputs=script_output
|
168 |
-
)
|
169 |
-
|
170 |
submit_btn.click(
|
171 |
fn=generate_speech,
|
172 |
-
inputs=[
|
173 |
outputs=audio_output
|
174 |
)
|
175 |
|
176 |
clear_btn.click(
|
177 |
-
fn=lambda: (None, None
|
178 |
inputs=[],
|
179 |
-
outputs=[
|
180 |
)
|
181 |
|
182 |
if __name__ == "__main__":
|
|
|
4 |
import gradio as gr
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
from huggingface_hub import snapshot_download
|
|
|
|
|
7 |
import logging
|
8 |
|
9 |
logging.basicConfig(level=logging.INFO)
|
|
|
22 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
23 |
print(f"Orpheus model loaded to {device}")
|
24 |
|
25 |
+
# Available voices
|
26 |
+
VOICES = ["tara", "leah", "jess", "leo", "dan", "mia", "zac", "zoe"]
|
27 |
+
|
28 |
+
# Available Emotive Tags
|
29 |
+
EMOTIVE_TAGS = ["`<laugh>`", "`<chuckle>`", "`<sigh>`", "`<cough>`", "`<sniffle>`", "`<groan>`", "`<yawn>`", "`<gasp>`"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
def process_prompt(prompt, voice, tokenizer, device):
|
32 |
prompt = f"{voice}: {prompt}"
|
|
|
67 |
|
68 |
return code_lists[0]
|
69 |
|
70 |
+
def redistribute_codes(code_list, snac_model):
|
71 |
+
layer_1, layer_2, layer_3 = [], [], []
|
72 |
+
for i in range(len(code_list) // 7):
|
73 |
+
layer_1.append(code_list[7*i])
|
74 |
+
layer_2.append(code_list[7*i+1]-(1*4096))
|
75 |
+
layer_3.append(code_list[7*i+2]-(2*4096))
|
76 |
+
layer_3.append(code_list[7*i+3]-(3*4096))
|
77 |
+
layer_2.append(code_list[7*i+4]-(4*4096))
|
78 |
+
layer_3.append(code_list[7*i+5]-(5*4096))
|
79 |
+
layer_3.append(code_list[7*i+6]-(6*4096))
|
80 |
+
|
81 |
+
codes = [
|
82 |
+
torch.tensor(layer_1, device=device).unsqueeze(0),
|
83 |
+
torch.tensor(layer_2, device=device).unsqueeze(0),
|
84 |
+
torch.tensor(layer_3, device=device).unsqueeze(0)
|
85 |
+
]
|
86 |
+
|
87 |
+
audio = snac_model.decode(codes)
|
88 |
+
return audio.cpu().numpy().flatten()
|
89 |
+
|
90 |
@spaces.GPU()
|
91 |
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
|
92 |
if not text.strip():
|
|
|
122 |
return None
|
123 |
|
124 |
with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
|
125 |
+
gr.Markdown(f"""
|
126 |
+
# 🎵 [Orpheus Text-to-Speech](https://github.com/canopyai/Orpheus-TTS)
|
127 |
+
Enter your text below and hear it converted to natural-sounding speech with the Orpheus TTS model.
|
128 |
+
|
129 |
+
## Tips for better prompts:
|
130 |
+
- Add paralinguistic elements like {", ".join(EMOTIVE_TAGS)} or `uhm` for more human-like speech.
|
131 |
+
- Longer text prompts generally work better than very short phrases
|
132 |
+
""")
|
133 |
|
134 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
with gr.Column(scale=2):
|
136 |
+
text_input = gr.Textbox(label="Text to speak", lines=5)
|
137 |
+
voice = gr.Dropdown(
|
138 |
+
choices=VOICES,
|
139 |
+
value="tara",
|
140 |
+
label="Voice",
|
141 |
+
info="Select the voice for speech generation"
|
142 |
+
)
|
143 |
|
144 |
+
with gr.Accordion("Advanced Settings", open=False):
|
145 |
+
temperature = gr.Slider(
|
146 |
+
minimum=0.1, maximum=1.5, value=0.6, step=0.05,
|
147 |
+
label="Temperature",
|
148 |
+
info="Higher values (0.7-1.0) create more expressive but less stable speech"
|
149 |
+
)
|
150 |
+
top_p = gr.Slider(
|
151 |
+
minimum=0.1, maximum=1.0, value=0.9, step=0.05,
|
152 |
+
label="Top P",
|
153 |
+
info="Higher values produce more diverse outputs"
|
154 |
+
)
|
155 |
+
repetition_penalty = gr.Slider(
|
156 |
+
minimum=1.0, maximum=2.0, value=1.2, step=0.1,
|
157 |
+
label="Repetition Penalty",
|
158 |
+
info="Higher values discourage repetitive patterns"
|
159 |
+
)
|
160 |
+
max_new_tokens = gr.Slider(
|
161 |
+
minimum=100, maximum=2000, value=1200, step=100,
|
162 |
+
label="Max Length",
|
163 |
+
info="Maximum length of generated audio (in tokens)"
|
164 |
+
)
|
165 |
|
166 |
with gr.Row():
|
167 |
+
submit_btn = gr.Button("Generate Speech", variant="primary")
|
168 |
+
clear_btn = gr.Button("Clear")
|
|
|
|
|
|
|
169 |
|
170 |
with gr.Column(scale=2):
|
171 |
audio_output = gr.Audio(label="Generated Speech", type="numpy")
|
172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
submit_btn.click(
|
174 |
fn=generate_speech,
|
175 |
+
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
|
176 |
outputs=audio_output
|
177 |
)
|
178 |
|
179 |
clear_btn.click(
|
180 |
+
fn=lambda: (None, None),
|
181 |
inputs=[],
|
182 |
+
outputs=[text_input, audio_output]
|
183 |
)
|
184 |
|
185 |
if __name__ == "__main__":
|