Spaces:
bla
/
Runtime error

EdgeTAM / app.py
bla's picture
Update app.py
ea6a5ed verified
raw
history blame
15.3 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import copy
import os
from datetime import datetime
import tempfile
import cv2
import matplotlib.pyplot as plt
import numpy as np
import gradio as gr
import torch
from moviepy.editor import ImageSequenceClip
from PIL import Image
from sam2.build_sam import build_sam2_video_predictor
# Remove CUDA environment variables
if 'TORCH_CUDNN_SDPA_ENABLED' in os.environ:
del os.environ["TORCH_CUDNN_SDPA_ENABLED"]
# UI Description
title = "<center><strong><font size='8'>EdgeTAM CPU</font></strong> <a href='https://github.com/facebookresearch/EdgeTAM'><font size='6'>[GitHub]</font></a></center>"
description_p = """# Instructions
<ol>
<li>Upload one video or click one example video</li>
<li>Click 'include' point type, select the object to segment and track</li>
<li>Click 'exclude' point type (optional), select the area to avoid segmenting</li>
<li>Click the 'Track' button to obtain the masked video</li>
</ol>
"""
# Example videos
examples = [
["examples/01_dog.mp4"],
["examples/02_cups.mp4"],
["examples/03_blocks.mp4"],
["examples/04_coffee.mp4"],
["examples/05_default_juggle.mp4"],
]
OBJ_ID = 0
# Initialize model on CPU
sam2_checkpoint = "checkpoints/edgetam.pt"
model_cfg = "edgetam.yaml"
def check_file_exists(filepath):
exists = os.path.exists(filepath)
if not exists:
print(f"WARNING: File not found: {filepath}")
return exists
# Verify model files
model_files_exist = check_file_exists(sam2_checkpoint) and check_file_exists(model_cfg)
try:
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
print("Predictor loaded on CPU")
except Exception as e:
print(f"Error loading model: {e}")
import traceback
traceback.print_exc()
predictor = None
# Utility Functions
def get_video_fps(video_path):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error: Could not open video.")
return 30.0
fps = cap.get(cv2.CAP_PROP_FPS)
cap.release()
return fps
def reset(session_state):
session_state["input_points"] = []
session_state["input_labels"] = []
if session_state["inference_state"] is not None:
predictor.reset_state(session_state["inference_state"])
session_state["first_frame"] = None
session_state["all_frames"] = None
session_state["inference_state"] = None
return (
None,
gr.update(open=True),
None,
None,
gr.update(value=None, visible=False),
session_state,
)
def clear_points(session_state):
session_state["input_points"] = []
session_state["input_labels"] = []
if session_state["inference_state"] is not None and session_state["inference_state"].get("tracking_has_started", False):
predictor.reset_state(session_state["inference_state"])
return (
session_state["first_frame"],
None,
gr.update(value=None, visible=False),
session_state,
)
def preprocess_video_in(video_path, session_state):
if video_path is None:
return (
gr.update(open=True),
None,
None,
gr.update(value=None, visible=False),
session_state,
)
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error: Could not open video.")
return (
gr.update(open=True),
None,
None,
gr.update(value=None, visible=False),
session_state,
)
# Video properties
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Resize for CPU performance
target_width = 640
scale_factor = 1.0
if frame_width > target_width:
scale_factor = target_width / frame_width
frame_width = target_width
frame_height = int(frame_height * scale_factor)
# Read frames with stride for CPU optimization
frame_number = 0
first_frame = None
all_frames = []
frame_stride = max(1, total_frames // 300) # Limit to ~300 frames
while True:
ret, frame = cap.read()
if not ret:
break
if frame_number % frame_stride == 0:
if scale_factor != 1.0:
frame = cv2.resize(frame, (frame_width, frame_height), interpolation=cv2.INTER_AREA)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
if first_frame is None:
first_frame = frame
all_frames.append(frame)
frame_number += 1
cap.release()
session_state["first_frame"] = copy.deepcopy(first_frame)
session_state["all_frames"] = all_frames
session_state["frame_stride"] = frame_stride
session_state["scale_factor"] = scale_factor
session_state["original_dimensions"] = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
session_state["inference_state"] = predictor.init_state(video_path=video_path)
session_state["input_points"] = []
session_state["input_labels"] = []
return [
gr.update(open=False),
first_frame,
None,
gr.update(value=None, visible=False),
session_state,
]
def segment_with_points(point_type, session_state, evt: gr.SelectData):
session_state["input_points"].append(evt.index)
print(f"TRACKING INPUT POINT: {session_state['input_points']}")
if point_type == "include":
session_state["input_labels"].append(1)
elif point_type == "exclude":
session_state["input_labels"].append(0)
print(f"TRACKING INPUT LABEL: {session_state['input_labels']}")
first_frame = session_state["first_frame"]
h, w = first_frame.shape[:2]
transparent_background = Image.fromarray(first_frame).convert("RGBA")
# Draw points
fraction = 0.01
radius = int(fraction * min(w, h))
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
for index, track in enumerate(session_state["input_points"]):
color = (0, 255, 0, 255) if session_state["input_labels"][index] == 1 else (255, 0, 0, 255)
cv2.circle(transparent_layer, track, radius, color, -1)
transparent_layer = Image.fromarray(transparent_layer, "RGBA")
selected_point_map = Image.alpha_composite(transparent_background, transparent_layer)
points = np.array(session_state["input_points"], dtype=np.float32)
labels = np.array(session_state["input_labels"], np.int32)
try:
_, _, out_mask_logits = predictor.add_new_points(
inference_state=session_state["inference_state"],
frame_idx=0,
obj_id=OBJ_ID,
points=points,
labels=labels,
)
mask_array = (out_mask_logits[0] > 0.0).cpu().numpy()
# Ensure mask matches frame size
if mask_array.shape[:2] != (h, w):
mask_array = cv2.resize(mask_array.astype(np.uint8), (w, h), interpolation=cv2.INTER_NEAREST).astype(bool)
mask_image = show_mask(mask_array)
if mask_image.size != transparent_background.size:
mask_image = mask_image.resize(transparent_background.size, Image.NEAREST)
first_frame_output = Image.alpha_composite(transparent_background, mask_image)
except Exception as e:
print(f"Error in segmentation: {e}")
first_frame_output = selected_point_map
return selected_point_map, first_frame_output, session_state
def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
cmap = plt.get_cmap("tab10")
cmap_idx = 0 if obj_id is None else obj_id
color = np.array([*cmap(cmap_idx)[:3], 0.6])
h, w = mask.shape[-2:] if len(mask.shape) > 2 else mask.shape
mask_reshaped = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
mask_rgba = (mask_reshaped * 255).astype(np.uint8)
if convert_to_image:
try:
if mask_rgba.shape[2] != 4:
proper_mask = np.zeros((h, w, 4), dtype=np.uint8)
proper_mask[:, :, :min(mask_rgba.shape[2], 4)] = mask_rgba[:, :, :min(mask_rgba.shape[2], 4)]
mask_rgba = proper_mask
return Image.fromarray(mask_rgba, "RGBA")
except Exception as e:
print(f"Error converting mask to image: {e}")
return Image.fromarray(np.zeros((h, w, 4), dtype=np.uint8), "RGBA")
return mask_rgba
def propagate_to_all(video_in, session_state, progress=gr.Progress()):
if len(session_state["input_points"]) == 0 or video_in is None or session_state["inference_state"] is None:
return gr.update(value=None, visible=False), session_state
chunk_size = 3
try:
video_segments = {}
total_frames = len(session_state["all_frames"])
progress(0, desc="Propagating segmentation through video...")
for i, (out_frame_idx, out_obj_ids, out_mask_logit) in enumerate(predictor.propagate_in_video(session_state["inference_state"])):
try:
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logit[i] > 0.0).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
progress((i + 1) / total_frames, desc=f"Processed frame {out_frame_idx}/{total_frames}")
if out_frame_idx % chunk_size == 0:
del out_mask_logit
import gc
gc.collect()
except Exception as e:
print(f"Error processing frame {out_frame_idx}: {e}")
continue
max_output_frames = 50
vis_frame_stride = max(1, total_frames // max_output_frames)
first_frame = session_state["all_frames"][0]
h, w = first_frame.shape[:2]
output_frames = []
for out_frame_idx in range(0, total_frames, vis_frame_stride):
if out_frame_idx not in video_segments or OBJ_ID not in video_segments[out_frame_idx]:
continue
try:
frame = session_state["all_frames"][out_frame_idx]
transparent_background = Image.fromarray(frame).convert("RGBA")
out_mask = video_segments[out_frame_idx][OBJ_ID]
# Validate mask dimensions
if out_mask.shape[:2] != (h, w):
if out_mask.size == 0: # Skip empty masks
print(f"Skipping empty mask for frame {out_frame_idx}")
continue
out_mask = cv2.resize(out_mask.astype(np.uint8), (w, h), interpolation=cv2.INTER_NEAREST).astype(bool)
mask_image = show_mask(out_mask)
if mask_image.size != transparent_background.size:
mask_image = mask_image.resize(transparent_background.size, Image.NEAREST)
output_frame = Image.alpha_composite(transparent_background, mask_image)
output_frames.append(np.array(output_frame))
if len(output_frames) % 10 == 0:
import gc
gc.collect()
except Exception as e:
print(f"Error creating output frame {out_frame_idx}: {e_RAW
traceback.print_exc()
continue
original_fps = get_video_fps(video_in)
fps = min(original_fps, 15) # Cap at 15 FPS for CPU
clip = ImageSequenceClip(output_frames, fps=fps)
unique_id = datetime.now().strftime("%Y%m%d%H%M%S")
final_vid_output_path = os.path.join(tempfile.gettempdir(), f"output_video_{unique_id}.mp4")
clip.write_videofile(
final_vid_output_path,
codec="libx264",
bitrate="800k",
threads=2,
logger=None
)
del video_segments, output_frames
import gc
gc.collect()
return gr.update(value=final_vid_output_path, visible=True), session_state
except Exception as e:
print(f"Error in propagate_to_all: {e}")
return gr.update(value=None, visible=False), session_state
def update_ui():
return gr.update(visible=True)
# Gradio Interface
with gr.Blocks() as demo:
session_state = gr.State({
"first_frame": None,
"all_frames": None,
"input_points": [],
"input_labels": [],
"inference_state": None,
"frame_stride": 1,
"scale_factor": 1.0,
"original_dimensions": None,
})
with gr.Column():
gr.Markdown(title)
with gr.Row():
with gr.Column():
gr.Markdown(description_p)
with gr.Accordion("Input Video", open=True) as video_in_drawer:
video_in = gr.Video(label="Input Video", format="mp4")
with gr.Row():
point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include", scale=2)
propagate_btn = gr.Button("Track", scale=1, variant="primary")
clear_points_btn = gr.Button("Clear Points", scale=1)
reset_btn = gr.Button("Reset", scale=1)
points_map = gr.Image(label="Frame with Point Prompt", type="numpy", interactive=False)
with gr.Column():
gr.Markdown("# Try some of the examples below ⬇️")
gr.Examples(examples=examples, inputs=[video_in], examples_per_page=5)
output_image = gr.Image(label="Reference Mask")
output_video = gr.Video(visible=False)
video_in.upload(
fn=preprocess_video_in,
inputs=[video_in, session_state],
outputs=[video_in_drawer, points_map, output_image, output_video, session_state],
queue=False,
)
video_in.change(
fn=preprocess_video_in,
inputs=[video_in, session_state],
outputs=[video_in_drawer, points_map, output_image, output_video, session_state],
queue=False,
)
points_map.select(
fn=segment_with_points,
inputs=[point_type, session_state],
outputs=[points_map, output_image, session_state],
queue=False,
)
clear_points_btn.click(
fn=clear_points,
inputs=session_state,
outputs=[points_map, output_image, output_video, session_state],
queue=False,
)
reset_btn.click(
fn=reset,
inputs=session_state,
outputs=[video_in, video_in_drawer, points_map, output_image, output_video, session_state],
queue=False,
)
propagate_btn.click(
fn=update_ui,
inputs=[],
outputs=output_video,
queue=False,
).then(
fn=propagate_to_all,
inputs=[video_in, session_state],
outputs=[output_video, session_state],
queue=True,
)
demo.queue()
demo.launch()