Spaces:
Sleeping
Sleeping
import pandas as pd | |
import numpy as np | |
import re | |
import pickle | |
import pdfminer | |
from pdfminer.high_level import extract_text | |
import pytesseract | |
from pdf2image import convert_from_path | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.preprocessing.text import Tokenizer | |
from tensorflow.keras.preprocessing.sequence import pad_sequences | |
from sklearn.preprocessing import LabelEncoder | |
def cleanResume(resumeText): | |
resumeText = re.sub('http\S+\s*', ' ', resumeText) | |
resumeText = re.sub('RT|cc', ' ', resumeText) | |
resumeText = re.sub('#\S+', '', resumeText) | |
resumeText = re.sub('@\S+', ' ', resumeText) | |
resumeText = re.sub('[%s]' % re.escape("""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""), ' ', resumeText) | |
resumeText = re.sub(r'[^\x00-\x7f]', r' ', resumeText) | |
resumeText = re.sub('\s+', ' ', resumeText) | |
return resumeText | |
def pdf_to_text(file): | |
text = extract_text(file) | |
if not text.strip(): # If PDF text extraction fails, use OCR | |
images = convert_from_path(file) | |
text = "\n".join([pytesseract.image_to_string(img) for img in images]) | |
return text | |
def load_deeprank_model(): | |
return load_model('deeprank_model.h5') | |
def predict_category(resumes_data, selected_category, max_sequence_length, model, tokenizer, label): | |
resumes_df = pd.DataFrame(resumes_data) | |
resumes_text = resumes_df['ResumeText'].values | |
tokenized_text = tokenizer.texts_to_sequences(resumes_text) | |
padded_text = pad_sequences(tokenized_text, maxlen=max_sequence_length) | |
predicted_probs = model.predict(padded_text) | |
for i, category in enumerate(label.classes_): | |
resumes_df[category] = predicted_probs[:, i] | |
resumes_df_sorted = resumes_df.sort_values(by=selected_category, ascending=False) | |
ranks = [{'Rank': rank + 1, 'FileName': row['FileName']} for rank, (idx, row) in enumerate(resumes_df_sorted.iterrows())] | |
return ranks | |
def main(): | |
model = load_deeprank_model() | |
df = pd.read_csv('UpdatedResumeDataSet.csv') | |
df['cleaned'] = df['Resume'].apply(cleanResume) | |
label = LabelEncoder() | |
df['Category'] = label.fit_transform(df['Category']) | |
text = df['cleaned'].values | |
tokenizer = Tokenizer() | |
tokenizer.fit_on_texts(text) | |
vocab_size = len(tokenizer.word_index) + 1 | |
num_classes = len(label.classes_) | |
max_sequence_length = 500 | |
resumes_data = [] | |
files = input("Enter the paths of resumes (comma-separated): ").split(',') | |
for file in files: | |
text = cleanResume(pdf_to_text(file.strip())) | |
resumes_data.append({'ResumeText': text, 'FileName': file.strip()}) | |
print("Available categories:", list(label.classes_)) | |
selected_category = input("Select a category to rank by: ") | |
if not resumes_data or selected_category not in label.classes_: | |
print("Error: Invalid input. Please provide valid resumes and select a valid category.") | |
else: | |
ranks = predict_category(resumes_data, selected_category, max_sequence_length, model, tokenizer, label) | |
print(pd.DataFrame(ranks)) | |
if __name__ == '__main__': | |
main() | |