Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,61 +1,79 @@
|
|
1 |
-
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
import re
|
5 |
import pickle
|
6 |
-
import
|
7 |
-
from
|
|
|
|
|
8 |
from tensorflow.keras.models import load_model
|
9 |
from tensorflow.keras.preprocessing.text import Tokenizer
|
10 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
11 |
-
|
12 |
-
nltk.download('stopwords')
|
13 |
-
stop_words = set(stopwords.words('english'))
|
14 |
|
15 |
def cleanResume(resumeText):
|
16 |
-
resumeText = re.sub(
|
17 |
-
resumeText = re.sub(
|
18 |
-
resumeText = re.sub(
|
19 |
-
resumeText = re.sub(
|
20 |
-
resumeText = re.sub(
|
21 |
resumeText = re.sub(r'[^\x00-\x7f]', r' ', resumeText)
|
22 |
-
resumeText = re.sub(
|
23 |
-
resumeText = ' '.join([word for word in resumeText.split() if word.lower() not in stop_words])
|
24 |
return resumeText
|
25 |
|
26 |
-
def
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
tokenizer
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
import numpy as np
|
3 |
import re
|
4 |
import pickle
|
5 |
+
import pdfminer
|
6 |
+
from pdfminer.high_level import extract_text
|
7 |
+
import pytesseract
|
8 |
+
from pdf2image import convert_from_path
|
9 |
from tensorflow.keras.models import load_model
|
10 |
from tensorflow.keras.preprocessing.text import Tokenizer
|
11 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
12 |
+
from sklearn.preprocessing import LabelEncoder
|
|
|
|
|
13 |
|
14 |
def cleanResume(resumeText):
|
15 |
+
resumeText = re.sub('http\S+\s*', ' ', resumeText)
|
16 |
+
resumeText = re.sub('RT|cc', ' ', resumeText)
|
17 |
+
resumeText = re.sub('#\S+', '', resumeText)
|
18 |
+
resumeText = re.sub('@\S+', ' ', resumeText)
|
19 |
+
resumeText = re.sub('[%s]' % re.escape("""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""), ' ', resumeText)
|
20 |
resumeText = re.sub(r'[^\x00-\x7f]', r' ', resumeText)
|
21 |
+
resumeText = re.sub('\s+', ' ', resumeText)
|
|
|
22 |
return resumeText
|
23 |
|
24 |
+
def pdf_to_text(file):
|
25 |
+
text = extract_text(file)
|
26 |
+
if not text.strip(): # If PDF text extraction fails, use OCR
|
27 |
+
images = convert_from_path(file)
|
28 |
+
text = "\n".join([pytesseract.image_to_string(img) for img in images])
|
29 |
+
return text
|
30 |
+
|
31 |
+
def load_deeprank_model():
|
32 |
+
return load_model('deeprank_model.h5')
|
33 |
+
|
34 |
+
def predict_category(resumes_data, selected_category, max_sequence_length, model, tokenizer, label):
|
35 |
+
resumes_df = pd.DataFrame(resumes_data)
|
36 |
+
resumes_text = resumes_df['ResumeText'].values
|
37 |
+
|
38 |
+
tokenized_text = tokenizer.texts_to_sequences(resumes_text)
|
39 |
+
padded_text = pad_sequences(tokenized_text, maxlen=max_sequence_length)
|
40 |
+
|
41 |
+
predicted_probs = model.predict(padded_text)
|
42 |
+
for i, category in enumerate(label.classes_):
|
43 |
+
resumes_df[category] = predicted_probs[:, i]
|
44 |
+
|
45 |
+
resumes_df_sorted = resumes_df.sort_values(by=selected_category, ascending=False)
|
46 |
+
ranks = [{'Rank': rank + 1, 'FileName': row['FileName']} for rank, (idx, row) in enumerate(resumes_df_sorted.iterrows())]
|
47 |
+
return ranks
|
48 |
+
|
49 |
+
def main():
|
50 |
+
model = load_deeprank_model()
|
51 |
+
df = pd.read_csv('UpdatedResumeDataSet.csv')
|
52 |
+
df['cleaned'] = df['Resume'].apply(cleanResume)
|
53 |
+
label = LabelEncoder()
|
54 |
+
df['Category'] = label.fit_transform(df['Category'])
|
55 |
+
|
56 |
+
text = df['cleaned'].values
|
57 |
+
tokenizer = Tokenizer()
|
58 |
+
tokenizer.fit_on_texts(text)
|
59 |
+
vocab_size = len(tokenizer.word_index) + 1
|
60 |
+
num_classes = len(label.classes_)
|
61 |
+
max_sequence_length = 500
|
62 |
+
|
63 |
+
resumes_data = []
|
64 |
+
files = input("Enter the paths of resumes (comma-separated): ").split(',')
|
65 |
+
for file in files:
|
66 |
+
text = cleanResume(pdf_to_text(file.strip()))
|
67 |
+
resumes_data.append({'ResumeText': text, 'FileName': file.strip()})
|
68 |
+
|
69 |
+
print("Available categories:", list(label.classes_))
|
70 |
+
selected_category = input("Select a category to rank by: ")
|
71 |
+
|
72 |
+
if not resumes_data or selected_category not in label.classes_:
|
73 |
+
print("Error: Invalid input. Please provide valid resumes and select a valid category.")
|
74 |
+
else:
|
75 |
+
ranks = predict_category(resumes_data, selected_category, max_sequence_length, model, tokenizer, label)
|
76 |
+
print(pd.DataFrame(ranks))
|
77 |
+
|
78 |
+
if __name__ == '__main__':
|
79 |
+
main()
|