test / modules /postprocess /swinir_model.py
bilegentile's picture
Upload folder using huggingface_hub
c19ca42 verified
import numpy as np
import torch
from PIL import Image
from rich.progress import Progress, TextColumn, BarColumn, TaskProgressColumn, TimeRemainingColumn, TimeElapsedColumn
from modules.postprocess.swinir_model_arch import SwinIR as net
from modules.postprocess.swinir_model_arch_v2 import Swin2SR as net2
from modules import devices, script_callbacks, shared
from modules.upscaler import Upscaler, compile_upscaler
class UpscalerSwinIR(Upscaler):
def __init__(self, dirname):
self.name = "SwinIR"
self.user_path = dirname
super().__init__()
self.scalers = self.find_scalers()
self.models = {}
def load_model(self, path, scale=4):
info = self.find_model(path)
if info is None:
return
if self.models.get(info.local_data_path, None) is not None:
shared.log.debug(f"Upscaler cached: type={self.name} model={info.local_data_path}")
return self.models[info.local_data_path]
pretrained_model = torch.load(info.local_data_path)
model_v2 = net2(
upscale=scale,
in_chans=3,
img_size=64,
window_size=8,
img_range=1.0,
depths=[6, 6, 6, 6, 6, 6],
embed_dim=180,
num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2,
upsampler="nearest+conv",
resi_connection="1conv",
)
model_v1 = net(
upscale=scale,
in_chans=3,
img_size=64,
window_size=8,
img_range=1.0,
depths=[6, 6, 6, 6, 6, 6, 6, 6, 6],
embed_dim=240,
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
mlp_ratio=2,
upsampler="nearest+conv",
resi_connection="3conv",
)
for model in [model_v1, model_v2]:
for param in ["params_ema", "params", None]:
try:
if param is not None:
model.load_state_dict(pretrained_model[param], strict=True)
else:
model.load_state_dict(pretrained_model, strict=True)
shared.log.info(f"Upscaler loaded: type={self.name} model={info.local_data_path} param={param}")
model = compile_upscaler(model)
self.models[info.local_data_path] = model
return model
except Exception as e:
shared.log.error(f'Upscaler invalid parameters: type={self.name} model={info.local_data_path} {e}')
return model
def do_upscale(self, img, selected_model):
model = self.load_model(selected_model)
if model is None:
return img
model = model.to(devices.device, dtype=devices.dtype)
img = upscale(img, model)
if shared.opts.upscaler_unload and selected_model in self.models:
del self.models[selected_model]
shared.log.debug(f"Upscaler unloaded: type={self.name} model={selected_model}")
devices.torch_gc(force=True)
return img
def upscale(
img,
model,
tile=None,
tile_overlap=None,
window_size=8,
scale=4,
):
tile = tile or shared.opts.upscaler_tile_size
tile_overlap = tile_overlap or shared.opts.upscaler_tile_overlap
img = np.array(img)
img = img[:, :, ::-1]
img = np.moveaxis(img, 2, 0) / 255
img = torch.from_numpy(img).float()
img = img.unsqueeze(0).to(devices.device, dtype=devices.dtype)
with torch.no_grad(), devices.autocast():
_, _, h_old, w_old = img.size()
h_pad = (h_old // window_size + 1) * window_size - h_old
w_pad = (w_old // window_size + 1) * window_size - w_old
img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :]
img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad]
output = inference(img, model, tile, tile_overlap, window_size, scale)
output = output[..., : h_old * scale, : w_old * scale]
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
if output.ndim == 3:
output = np.transpose(
output[[2, 1, 0], :, :], (1, 2, 0)
) # CHW-RGB to HCW-BGR
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
return Image.fromarray(output, "RGB")
def inference(img, model, tile, tile_overlap, window_size, scale):
# test the image tile by tile
b, c, h, w = img.size()
tile = min(tile, h, w)
assert tile % window_size == 0, "tile size should be a multiple of window_size"
sf = scale
stride = tile - tile_overlap
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
E = torch.zeros(b, c, h * sf, w * sf, dtype=devices.dtype, device=devices.device).type_as(img)
W = torch.zeros_like(E, dtype=devices.dtype, device=devices.device)
with Progress(TextColumn('[cyan]{task.description}'), BarColumn(), TaskProgressColumn(), TimeRemainingColumn(), TimeElapsedColumn(), console=shared.console) as progress:
task = progress.add_task(description="Upscaling Initializing", total=len(h_idx_list) * len(w_idx_list))
for h_idx in h_idx_list:
for w_idx in w_idx_list:
if shared.state.interrupted or shared.state.skipped:
break
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
out_patch = model(in_patch)
out_patch_mask = torch.ones_like(out_patch)
E[
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
].add_(out_patch)
W[
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
].add_(out_patch_mask)
progress.update(task, advance=1, description="Upscaling")
output = E.div_(W)
return output