File size: 6,046 Bytes
c19ca42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import numpy as np
import torch
from PIL import Image
from rich.progress import Progress, TextColumn, BarColumn, TaskProgressColumn, TimeRemainingColumn, TimeElapsedColumn
from modules.postprocess.swinir_model_arch import SwinIR as net
from modules.postprocess.swinir_model_arch_v2 import Swin2SR as net2
from modules import devices, script_callbacks, shared
from modules.upscaler import Upscaler, compile_upscaler


class UpscalerSwinIR(Upscaler):
    def __init__(self, dirname):
        self.name = "SwinIR"
        self.user_path = dirname
        super().__init__()
        self.scalers = self.find_scalers()
        self.models = {}

    def load_model(self, path, scale=4):
        info = self.find_model(path)
        if info is None:
            return
        if self.models.get(info.local_data_path, None) is not None:
            shared.log.debug(f"Upscaler cached: type={self.name} model={info.local_data_path}")
            return self.models[info.local_data_path]
        pretrained_model = torch.load(info.local_data_path)
        model_v2 = net2(
            upscale=scale,
            in_chans=3,
            img_size=64,
            window_size=8,
            img_range=1.0,
            depths=[6, 6, 6, 6, 6, 6],
            embed_dim=180,
            num_heads=[6, 6, 6, 6, 6, 6],
            mlp_ratio=2,
            upsampler="nearest+conv",
            resi_connection="1conv",
        )
        model_v1 = net(
            upscale=scale,
            in_chans=3,
            img_size=64,
            window_size=8,
            img_range=1.0,
            depths=[6, 6, 6, 6, 6, 6, 6, 6, 6],
            embed_dim=240,
            num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
            mlp_ratio=2,
            upsampler="nearest+conv",
            resi_connection="3conv",
        )
        for model in [model_v1, model_v2]:
            for param in ["params_ema", "params", None]:
                try:
                    if param is not None:
                        model.load_state_dict(pretrained_model[param], strict=True)
                    else:
                        model.load_state_dict(pretrained_model, strict=True)
                    shared.log.info(f"Upscaler loaded: type={self.name} model={info.local_data_path} param={param}")
                    model = compile_upscaler(model)
                    self.models[info.local_data_path] = model
                    return model
                except Exception as e:
                    shared.log.error(f'Upscaler invalid parameters: type={self.name} model={info.local_data_path} {e}')
        return model

    def do_upscale(self, img, selected_model):
        model = self.load_model(selected_model)
        if model is None:
            return img
        model = model.to(devices.device, dtype=devices.dtype)
        img = upscale(img, model)
        if shared.opts.upscaler_unload and selected_model in self.models:
            del self.models[selected_model]
            shared.log.debug(f"Upscaler unloaded: type={self.name} model={selected_model}")
            devices.torch_gc(force=True)
        return img


def upscale(
        img,
        model,
        tile=None,
        tile_overlap=None,
        window_size=8,
        scale=4,
):
    tile = tile or shared.opts.upscaler_tile_size
    tile_overlap = tile_overlap or shared.opts.upscaler_tile_overlap
    img = np.array(img)
    img = img[:, :, ::-1]
    img = np.moveaxis(img, 2, 0) / 255
    img = torch.from_numpy(img).float()
    img = img.unsqueeze(0).to(devices.device, dtype=devices.dtype)
    with torch.no_grad(), devices.autocast():
        _, _, h_old, w_old = img.size()
        h_pad = (h_old // window_size + 1) * window_size - h_old
        w_pad = (w_old // window_size + 1) * window_size - w_old
        img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :]
        img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad]
        output = inference(img, model, tile, tile_overlap, window_size, scale)
        output = output[..., : h_old * scale, : w_old * scale]
        output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
        if output.ndim == 3:
            output = np.transpose(
                output[[2, 1, 0], :, :], (1, 2, 0)
            )  # CHW-RGB to HCW-BGR
        output = (output * 255.0).round().astype(np.uint8)  # float32 to uint8
        return Image.fromarray(output, "RGB")


def inference(img, model, tile, tile_overlap, window_size, scale):
    # test the image tile by tile
    b, c, h, w = img.size()
    tile = min(tile, h, w)
    assert tile % window_size == 0, "tile size should be a multiple of window_size"
    sf = scale
    stride = tile - tile_overlap
    h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
    w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
    E = torch.zeros(b, c, h * sf, w * sf, dtype=devices.dtype, device=devices.device).type_as(img)
    W = torch.zeros_like(E, dtype=devices.dtype, device=devices.device)

    with Progress(TextColumn('[cyan]{task.description}'), BarColumn(), TaskProgressColumn(), TimeRemainingColumn(), TimeElapsedColumn(), console=shared.console) as progress:
        task = progress.add_task(description="Upscaling Initializing", total=len(h_idx_list) * len(w_idx_list))
        for h_idx in h_idx_list:
            for w_idx in w_idx_list:
                if shared.state.interrupted or shared.state.skipped:
                    break
                in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
                out_patch = model(in_patch)
                out_patch_mask = torch.ones_like(out_patch)

                E[
                ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
                ].add_(out_patch)
                W[
                ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
                ].add_(out_patch_mask)
                progress.update(task, advance=1, description="Upscaling")
    output = E.div_(W)
    return output