Spaces:
Runtime error
Runtime error
import inspect | |
from typing import Union, Optional, Callable, Any, List | |
import torch | |
import numpy as np | |
import diffusers | |
from diffusers.pipelines.onnx_utils import ORT_TO_NP_TYPE | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
from diffusers.pipelines.stable_diffusion.pipeline_onnx_stable_diffusion_upscale import preprocess | |
from diffusers.image_processor import PipelineImageInput | |
from modules.onnx_impl.pipelines import CallablePipelineBase | |
from modules.onnx_impl.pipelines.utils import prepare_latents, randn_tensor | |
class OnnxStableDiffusionUpscalePipeline(diffusers.OnnxStableDiffusionUpscalePipeline, CallablePipelineBase): | |
__module__ = 'diffusers' | |
__name__ = 'OnnxStableDiffusionUpscalePipeline' | |
def __init__( | |
self, | |
vae_encoder: diffusers.OnnxRuntimeModel, | |
vae_decoder: diffusers.OnnxRuntimeModel, | |
text_encoder: diffusers.OnnxRuntimeModel, | |
tokenizer: Any, | |
unet: diffusers.OnnxRuntimeModel, | |
scheduler: Any, | |
safety_checker: diffusers.OnnxRuntimeModel, | |
feature_extractor: Any, | |
requires_safety_checker: bool = True | |
): | |
super().__init__(vae_encoder, vae_decoder, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, requires_safety_checker) | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
image: PipelineImageInput = None, | |
num_inference_steps: int = 75, | |
guidance_scale: float = 9.0, | |
noise_level: int = 20, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[np.ndarray] = None, | |
prompt_embeds: Optional[np.ndarray] = None, | |
negative_prompt_embeds: Optional[np.ndarray] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, np.ndarray], None]] = None, | |
callback_steps: Optional[int] = 1, | |
): | |
# 1. Check inputs | |
self.check_inputs( | |
prompt, | |
image, | |
noise_level, | |
callback_steps, | |
negative_prompt, | |
prompt_embeds, | |
negative_prompt_embeds, | |
) | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if generator is None: | |
generator = torch.Generator("cpu") | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
prompt_embeds = self._encode_prompt( | |
prompt, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
) | |
latents_dtype = prompt_embeds.dtype | |
image = preprocess(image).cpu().numpy() | |
height, width = image.shape[2:] | |
latents = prepare_latents( | |
self.scheduler.init_noise_sigma, | |
batch_size * num_images_per_prompt, | |
height, | |
width, | |
latents_dtype, | |
generator, | |
) | |
self.scheduler.set_timesteps(num_inference_steps) | |
timesteps = self.scheduler.timesteps | |
# 5. Add noise to image | |
noise_level = np.array([noise_level]).astype(np.int64) | |
noise = randn_tensor( | |
image.shape, | |
latents_dtype, | |
generator, | |
) | |
image = self.low_res_scheduler.add_noise( | |
torch.from_numpy(image), torch.from_numpy(noise), torch.from_numpy(noise_level) | |
) | |
image = image.numpy() | |
batch_multiplier = 2 if do_classifier_free_guidance else 1 | |
image = np.concatenate([image] * batch_multiplier * num_images_per_prompt) | |
noise_level = np.concatenate([noise_level] * image.shape[0]) | |
# 7. Check that sizes of image and latents match | |
num_channels_image = image.shape[1] | |
if self.num_latent_channels + num_channels_image != self.num_unet_input_channels: | |
raise ValueError( | |
"Incorrect configuration settings! The config of `pipeline.unet` expects" | |
f" {self.num_unet_input_channels} but received `num_channels_latents`: {self.num_latent_channels} +" | |
f" `num_channels_image`: {num_channels_image} " | |
f" = {self.num_latent_channels + num_channels_image}. Please verify the config of" | |
" `pipeline.unet` or your `image` input." | |
) | |
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
timestep_dtype = next( | |
(input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)" | |
) | |
timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype] | |
# 9. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents | |
# concat latents, mask, masked_image_latents in the channel dimension | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
latent_model_input = np.concatenate([latent_model_input, image], axis=1) | |
# timestep to tensor | |
timestep = np.array([t], dtype=timestep_dtype) | |
# predict the noise residual | |
noise_pred = self.unet( | |
sample=latent_model_input, | |
timestep=timestep, | |
encoder_hidden_states=prompt_embeds, | |
class_labels=noise_level, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step( | |
torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs | |
).prev_sample | |
latents = latents.numpy() | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
has_nsfw_concept = None | |
if output_type != "latent": | |
# 10. Post-processing | |
image = self.decode_latents(latents) | |
# image = self.vae_decoder(latent_sample=latents)[0] | |
# it seems likes there is a strange result for using half-precision vae decoder if batchsize>1 | |
image = np.concatenate( | |
[self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])] | |
) | |
image = np.clip(image / 2 + 0.5, 0, 1) | |
image = image.transpose((0, 2, 3, 1)) | |
if self.safety_checker is not None: | |
safety_checker_input = self.feature_extractor( | |
self.numpy_to_pil(image), return_tensors="np" | |
).pixel_values.astype(image.dtype) | |
images, has_nsfw_concept = [], [] | |
for i in range(image.shape[0]): | |
image_i, has_nsfw_concept_i = self.safety_checker( | |
clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1] | |
) | |
images.append(image_i) | |
has_nsfw_concept.append(has_nsfw_concept_i[0]) | |
image = np.concatenate(images) | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
else: | |
image = latents | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |