File size: 9,164 Bytes
c19ca42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import inspect
from typing import Union, Optional, Callable, Any, List
import torch
import numpy as np
import diffusers
from diffusers.pipelines.onnx_utils import ORT_TO_NP_TYPE
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.pipeline_onnx_stable_diffusion_upscale import preprocess
from diffusers.image_processor import PipelineImageInput
from modules.onnx_impl.pipelines import CallablePipelineBase
from modules.onnx_impl.pipelines.utils import prepare_latents, randn_tensor


class OnnxStableDiffusionUpscalePipeline(diffusers.OnnxStableDiffusionUpscalePipeline, CallablePipelineBase):
    __module__ = 'diffusers'
    __name__ = 'OnnxStableDiffusionUpscalePipeline'

    def __init__(
        self,
        vae_encoder: diffusers.OnnxRuntimeModel,
        vae_decoder: diffusers.OnnxRuntimeModel,
        text_encoder: diffusers.OnnxRuntimeModel,
        tokenizer: Any,
        unet: diffusers.OnnxRuntimeModel,
        scheduler: Any,
        safety_checker: diffusers.OnnxRuntimeModel,
        feature_extractor: Any,
        requires_safety_checker: bool = True
    ):
        super().__init__(vae_encoder, vae_decoder, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, requires_safety_checker)

    def __call__(
        self,
        prompt: Union[str, List[str]],
        image: PipelineImageInput = None,
        num_inference_steps: int = 75,
        guidance_scale: float = 9.0,
        noise_level: int = 20,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[np.ndarray] = None,
        prompt_embeds: Optional[np.ndarray] = None,
        negative_prompt_embeds: Optional[np.ndarray] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
        callback_steps: Optional[int] = 1,
    ):
        # 1. Check inputs
        self.check_inputs(
            prompt,
            image,
            noise_level,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
        )

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if generator is None:
            generator = torch.Generator("cpu")

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        prompt_embeds = self._encode_prompt(
            prompt,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
        )

        latents_dtype = prompt_embeds.dtype
        image = preprocess(image).cpu().numpy()
        height, width = image.shape[2:]

        latents = prepare_latents(
            self.scheduler.init_noise_sigma,
            batch_size * num_images_per_prompt,
            height,
            width,
            latents_dtype,
            generator,
        )

        self.scheduler.set_timesteps(num_inference_steps)
        timesteps = self.scheduler.timesteps

        # 5. Add noise to image
        noise_level = np.array([noise_level]).astype(np.int64)
        noise = randn_tensor(
            image.shape,
            latents_dtype,
            generator,
        )

        image = self.low_res_scheduler.add_noise(
            torch.from_numpy(image), torch.from_numpy(noise), torch.from_numpy(noise_level)
        )
        image = image.numpy()

        batch_multiplier = 2 if do_classifier_free_guidance else 1
        image = np.concatenate([image] * batch_multiplier * num_images_per_prompt)
        noise_level = np.concatenate([noise_level] * image.shape[0])

        # 7. Check that sizes of image and latents match
        num_channels_image = image.shape[1]
        if self.num_latent_channels + num_channels_image != self.num_unet_input_channels:
            raise ValueError(
                "Incorrect configuration settings! The config of `pipeline.unet` expects"
                f" {self.num_unet_input_channels} but received `num_channels_latents`: {self.num_latent_channels} +"
                f" `num_channels_image`: {num_channels_image} "
                f" = {self.num_latent_channels + num_channels_image}. Please verify the config of"
                " `pipeline.unet` or your `image` input."
            )

        # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        timestep_dtype = next(
            (input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)"
        )
        timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype]

        # 9. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents

                # concat latents, mask, masked_image_latents in the channel dimension
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
                latent_model_input = np.concatenate([latent_model_input, image], axis=1)

                # timestep to tensor
                timestep = np.array([t], dtype=timestep_dtype)

                # predict the noise residual
                noise_pred = self.unet(
                    sample=latent_model_input,
                    timestep=timestep,
                    encoder_hidden_states=prompt_embeds,
                    class_labels=noise_level,
                )[0]

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(
                    torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs
                ).prev_sample
                latents = latents.numpy()

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

        has_nsfw_concept = None

        if output_type != "latent":
            # 10. Post-processing
            image = self.decode_latents(latents)

            # image = self.vae_decoder(latent_sample=latents)[0]
            # it seems likes there is a strange result for using half-precision vae decoder if batchsize>1
            image = np.concatenate(
                [self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])]
            )

            image = np.clip(image / 2 + 0.5, 0, 1)
            image = image.transpose((0, 2, 3, 1))

            if self.safety_checker is not None:
                safety_checker_input = self.feature_extractor(
                    self.numpy_to_pil(image), return_tensors="np"
                ).pixel_values.astype(image.dtype)

                images, has_nsfw_concept = [], []
                for i in range(image.shape[0]):
                    image_i, has_nsfw_concept_i = self.safety_checker(
                        clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1]
                    )
                    images.append(image_i)
                    has_nsfw_concept.append(has_nsfw_concept_i[0])
                image = np.concatenate(images)

            if output_type == "pil":
                image = self.numpy_to_pil(image)
        else:
            image = latents

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)