Spaces:
Runtime error
Runtime error
File size: 9,164 Bytes
c19ca42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import inspect
from typing import Union, Optional, Callable, Any, List
import torch
import numpy as np
import diffusers
from diffusers.pipelines.onnx_utils import ORT_TO_NP_TYPE
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.pipeline_onnx_stable_diffusion_upscale import preprocess
from diffusers.image_processor import PipelineImageInput
from modules.onnx_impl.pipelines import CallablePipelineBase
from modules.onnx_impl.pipelines.utils import prepare_latents, randn_tensor
class OnnxStableDiffusionUpscalePipeline(diffusers.OnnxStableDiffusionUpscalePipeline, CallablePipelineBase):
__module__ = 'diffusers'
__name__ = 'OnnxStableDiffusionUpscalePipeline'
def __init__(
self,
vae_encoder: diffusers.OnnxRuntimeModel,
vae_decoder: diffusers.OnnxRuntimeModel,
text_encoder: diffusers.OnnxRuntimeModel,
tokenizer: Any,
unet: diffusers.OnnxRuntimeModel,
scheduler: Any,
safety_checker: diffusers.OnnxRuntimeModel,
feature_extractor: Any,
requires_safety_checker: bool = True
):
super().__init__(vae_encoder, vae_decoder, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, requires_safety_checker)
def __call__(
self,
prompt: Union[str, List[str]],
image: PipelineImageInput = None,
num_inference_steps: int = 75,
guidance_scale: float = 9.0,
noise_level: int = 20,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[np.ndarray] = None,
prompt_embeds: Optional[np.ndarray] = None,
negative_prompt_embeds: Optional[np.ndarray] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
callback_steps: Optional[int] = 1,
):
# 1. Check inputs
self.check_inputs(
prompt,
image,
noise_level,
callback_steps,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if generator is None:
generator = torch.Generator("cpu")
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
prompt_embeds = self._encode_prompt(
prompt,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
latents_dtype = prompt_embeds.dtype
image = preprocess(image).cpu().numpy()
height, width = image.shape[2:]
latents = prepare_latents(
self.scheduler.init_noise_sigma,
batch_size * num_images_per_prompt,
height,
width,
latents_dtype,
generator,
)
self.scheduler.set_timesteps(num_inference_steps)
timesteps = self.scheduler.timesteps
# 5. Add noise to image
noise_level = np.array([noise_level]).astype(np.int64)
noise = randn_tensor(
image.shape,
latents_dtype,
generator,
)
image = self.low_res_scheduler.add_noise(
torch.from_numpy(image), torch.from_numpy(noise), torch.from_numpy(noise_level)
)
image = image.numpy()
batch_multiplier = 2 if do_classifier_free_guidance else 1
image = np.concatenate([image] * batch_multiplier * num_images_per_prompt)
noise_level = np.concatenate([noise_level] * image.shape[0])
# 7. Check that sizes of image and latents match
num_channels_image = image.shape[1]
if self.num_latent_channels + num_channels_image != self.num_unet_input_channels:
raise ValueError(
"Incorrect configuration settings! The config of `pipeline.unet` expects"
f" {self.num_unet_input_channels} but received `num_channels_latents`: {self.num_latent_channels} +"
f" `num_channels_image`: {num_channels_image} "
f" = {self.num_latent_channels + num_channels_image}. Please verify the config of"
" `pipeline.unet` or your `image` input."
)
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
timestep_dtype = next(
(input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)"
)
timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype]
# 9. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
# concat latents, mask, masked_image_latents in the channel dimension
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
latent_model_input = np.concatenate([latent_model_input, image], axis=1)
# timestep to tensor
timestep = np.array([t], dtype=timestep_dtype)
# predict the noise residual
noise_pred = self.unet(
sample=latent_model_input,
timestep=timestep,
encoder_hidden_states=prompt_embeds,
class_labels=noise_level,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(
torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs
).prev_sample
latents = latents.numpy()
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
has_nsfw_concept = None
if output_type != "latent":
# 10. Post-processing
image = self.decode_latents(latents)
# image = self.vae_decoder(latent_sample=latents)[0]
# it seems likes there is a strange result for using half-precision vae decoder if batchsize>1
image = np.concatenate(
[self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])]
)
image = np.clip(image / 2 + 0.5, 0, 1)
image = image.transpose((0, 2, 3, 1))
if self.safety_checker is not None:
safety_checker_input = self.feature_extractor(
self.numpy_to_pil(image), return_tensors="np"
).pixel_values.astype(image.dtype)
images, has_nsfw_concept = [], []
for i in range(image.shape[0]):
image_i, has_nsfw_concept_i = self.safety_checker(
clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1]
)
images.append(image_i)
has_nsfw_concept.append(has_nsfw_concept_i[0])
image = np.concatenate(images)
if output_type == "pil":
image = self.numpy_to_pil(image)
else:
image = latents
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|