bilegentile's picture
Upload folder using huggingface_hub
c19ca42 verified
import torch
from modules.sd_hijack_utils import CondFunc
CondFunc('torchsde._brownian.brownian_interval._randn', lambda _, size, dtype, device, seed: torch.randn(size, dtype=dtype, device=torch.device("cpu"), generator=torch.Generator(torch.device("cpu")).manual_seed(int(seed))).to(device), lambda _, size, dtype, device, seed: device.type == 'privateuseone')
# https://github.com/microsoft/DirectML/issues/400
CondFunc('torch.Tensor.new', lambda orig, self, *args, **kwargs: orig(self.cpu(), *args, **kwargs).to(self.device), lambda orig, self, *args, **kwargs: torch.dml.is_directml_device(self.device))
_lerp = torch.lerp
def lerp(*args, **kwargs) -> torch.Tensor:
rep = None
for i in range(0, len(args)):
if torch.is_tensor(args[i]):
rep = args[i]
break
if rep is None:
for key in kwargs:
if torch.is_tensor(kwargs[key]):
rep = kwargs[key]
break
if torch.dml.is_directml_device(rep.device):
args = list(args)
if rep.dtype == torch.float16:
for i in range(len(args)):
if torch.is_tensor(args[i]):
args[i] = args[i].float()
for i in range(len(args)):
if torch.is_tensor(args[i]):
args[i] = args[i].cpu()
if rep.dtype == torch.float16:
for kwarg in kwargs:
if torch.is_tensor(kwargs[kwarg]):
kwargs[kwarg] = kwargs[kwarg].float()
for kwarg in kwargs:
if torch.is_tensor(kwargs[kwarg]):
kwargs[kwarg] = kwargs[kwarg].cpu()
return _lerp(*args, **kwargs).to(rep.device).type(rep.dtype)
return _lerp(*args, **kwargs)
torch.lerp = lerp