import torch from modules.sd_hijack_utils import CondFunc CondFunc('torchsde._brownian.brownian_interval._randn', lambda _, size, dtype, device, seed: torch.randn(size, dtype=dtype, device=torch.device("cpu"), generator=torch.Generator(torch.device("cpu")).manual_seed(int(seed))).to(device), lambda _, size, dtype, device, seed: device.type == 'privateuseone') # https://github.com/microsoft/DirectML/issues/400 CondFunc('torch.Tensor.new', lambda orig, self, *args, **kwargs: orig(self.cpu(), *args, **kwargs).to(self.device), lambda orig, self, *args, **kwargs: torch.dml.is_directml_device(self.device)) _lerp = torch.lerp def lerp(*args, **kwargs) -> torch.Tensor: rep = None for i in range(0, len(args)): if torch.is_tensor(args[i]): rep = args[i] break if rep is None: for key in kwargs: if torch.is_tensor(kwargs[key]): rep = kwargs[key] break if torch.dml.is_directml_device(rep.device): args = list(args) if rep.dtype == torch.float16: for i in range(len(args)): if torch.is_tensor(args[i]): args[i] = args[i].float() for i in range(len(args)): if torch.is_tensor(args[i]): args[i] = args[i].cpu() if rep.dtype == torch.float16: for kwarg in kwargs: if torch.is_tensor(kwargs[kwarg]): kwargs[kwarg] = kwargs[kwarg].float() for kwarg in kwargs: if torch.is_tensor(kwargs[kwarg]): kwargs[kwarg] = kwargs[kwarg].cpu() return _lerp(*args, **kwargs).to(rep.device).type(rep.dtype) return _lerp(*args, **kwargs) torch.lerp = lerp