bilegentile's picture
Upload folder using huggingface_hub
c19ca42 verified
import os
import time
from typing import List, Union
import cv2
import numpy as np
from PIL import Image
from modules.control import util # helper functions
from modules.control import unit # control units
from modules.control import processors # image preprocessors
from modules.control.units import controlnet # lllyasviel ControlNet
from modules.control.units import xs # VisLearn ControlNet-XS
from modules.control.units import lite # Kohya ControlLLLite
from modules.control.units import t2iadapter # TencentARC T2I-Adapter
from modules.control.units import reference # ControlNet-Reference
from modules import devices, shared, errors, processing, images, sd_models, scripts, masking
from modules.processing_class import StableDiffusionProcessingControl
debug = shared.log.trace if os.environ.get('SD_CONTROL_DEBUG', None) is not None else lambda *args, **kwargs: None
debug('Trace: CONTROL')
pipe = None
instance = None
original_pipeline = None
def restore_pipeline():
global pipe, instance # pylint: disable=global-statement
if instance is not None and hasattr(instance, 'restore'):
instance.restore()
if original_pipeline is not None and (original_pipeline.__class__.__name__ != shared.sd_model.__class__.__name__):
shared.log.debug(f'Control restored pipeline: class={shared.sd_model.__class__.__name__} to={original_pipeline.__class__.__name__}')
shared.sd_model = original_pipeline
pipe = None
instance = None
devices.torch_gc()
def terminate(msg):
restore_pipeline()
shared.log.error(f'Control terminated: {msg}')
return msg
def control_run(units: List[unit.Unit], inputs, inits, mask, unit_type: str, is_generator: bool, input_type: int,
prompt, negative, styles, steps, sampler_index,
seed, subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w,
cfg_scale, clip_skip, image_cfg_scale, diffusers_guidance_rescale, sag_scale, cfg_end, full_quality, restore_faces, tiling,
hdr_mode, hdr_brightness, hdr_color, hdr_sharpen, hdr_clamp, hdr_boundary, hdr_threshold, hdr_maximize, hdr_max_center, hdr_max_boundry, hdr_color_picker, hdr_tint_ratio,
resize_mode_before, resize_name_before, width_before, height_before, scale_by_before, selected_scale_tab_before,
resize_mode_after, resize_name_after, width_after, height_after, scale_by_after, selected_scale_tab_after,
resize_mode_mask, resize_name_mask, width_mask, height_mask, scale_by_mask, selected_scale_tab_mask,
denoising_strength, batch_count, batch_size,
enable_hr, hr_sampler_index, hr_denoising_strength, hr_upscaler, hr_force, hr_second_pass_steps, hr_scale, hr_resize_x, hr_resize_y, refiner_steps,
refiner_start, refiner_prompt, refiner_negative,
video_skip_frames, video_type, video_duration, video_loop, video_pad, video_interpolate,
*input_script_args # pylint: disable=unused-argument
):
global instance, pipe, original_pipeline # pylint: disable=global-statement
debug(f'Control: type={unit_type} input={inputs} init={inits} type={input_type}')
if inputs is None or (type(inputs) is list and len(inputs) == 0):
inputs = [None]
output_images: List[Image.Image] = [] # output images
active_process: List[processors.Processor] = [] # all active preprocessors
active_model: List[Union[controlnet.ControlNet, xs.ControlNetXS, t2iadapter.Adapter]] = [] # all active models
active_strength: List[float] = [] # strength factors for all active models
active_start: List[float] = [] # start step for all active models
active_end: List[float] = [] # end step for all active models
processed_image: Image.Image = None # last processed image
if mask is not None and input_type == 0:
input_type = 1 # inpaint always requires control_image
p = StableDiffusionProcessingControl(
prompt = prompt,
negative_prompt = negative,
styles = styles,
steps = steps,
n_iter = batch_count,
batch_size = batch_size,
sampler_name = processing.get_sampler_name(sampler_index),
seed = seed,
subseed = subseed,
subseed_strength = subseed_strength,
seed_resize_from_h = seed_resize_from_h,
seed_resize_from_w = seed_resize_from_w,
# advanced
cfg_scale = cfg_scale,
clip_skip = clip_skip,
image_cfg_scale = image_cfg_scale,
diffusers_guidance_rescale = diffusers_guidance_rescale,
sag_scale = sag_scale,
full_quality = full_quality,
restore_faces = restore_faces,
tiling = tiling,
# resize
resize_mode = resize_mode_before if resize_name_before != 'None' else 0,
resize_name = resize_name_before,
scale_by = scale_by_before,
selected_scale_tab = selected_scale_tab_before,
denoising_strength = denoising_strength,
# inpaint
inpaint_full_res = masking.opts.mask_only,
inpainting_mask_invert = 1 if masking.opts.invert else 0,
inpainting_fill = 1,
# hdr
hdr_mode=hdr_mode, hdr_brightness=hdr_brightness, hdr_color=hdr_color, hdr_sharpen=hdr_sharpen, hdr_clamp=hdr_clamp,
hdr_boundary=hdr_boundary, hdr_threshold=hdr_threshold, hdr_maximize=hdr_maximize, hdr_max_center=hdr_max_center, hdr_max_boundry=hdr_max_boundry, hdr_color_picker=hdr_color_picker, hdr_tint_ratio=hdr_tint_ratio,
# path
outpath_samples=shared.opts.outdir_samples or shared.opts.outdir_control_samples,
outpath_grids=shared.opts.outdir_grids or shared.opts.outdir_control_grids,
)
processing.process_init(p)
# set initial resolution
if resize_mode_before != 0 or inputs is None or inputs == [None]:
p.width, p.height = width_before, height_before # pylint: disable=attribute-defined-outside-init
else:
del p.width
del p.height
# hires/refine defined outside of main init
p.enable_hr = enable_hr
p.hr_sampler_name = processing.get_sampler_name(hr_sampler_index)
p.hr_denoising_strength = hr_denoising_strength
p.hr_upscaler = hr_upscaler
p.hr_force = hr_force
p.hr_second_pass_steps = hr_second_pass_steps
p.hr_scale = hr_scale
p.hr_resize_x = hr_resize_x
p.hr_resize_y = hr_resize_y
p.refiner_steps = refiner_steps
p.refiner_start = refiner_start
p.refiner_prompt = refiner_prompt
p.refiner_negative = refiner_negative
if p.enable_hr and (p.hr_resize_x == 0 or p.hr_resize_y == 0):
p.hr_upscale_to_x, p.hr_upscale_to_y = 8 * int(p.width * p.hr_scale / 8), 8 * int(p.height * p.hr_scale / 8)
t0 = time.time()
num_units = 0
for u in units:
if u.type != unit_type:
continue
num_units += 1
debug(f'Control unit: i={num_units} type={u.type} enabled={u.enabled}')
if not u.enabled:
continue
if unit_type == 't2i adapter' and u.adapter.model is not None:
active_process.append(u.process)
active_model.append(u.adapter)
active_strength.append(float(u.strength))
p.adapter_conditioning_factor = u.factor
shared.log.debug(f'Control T2I-Adapter unit: i={num_units} process={u.process.processor_id} model={u.adapter.model_id} strength={u.strength} factor={u.factor}')
elif unit_type == 'controlnet' and u.controlnet.model is not None:
active_process.append(u.process)
active_model.append(u.controlnet)
active_strength.append(float(u.strength))
active_start.append(float(u.start))
active_end.append(float(u.end))
p.guess_mode = u.guess
shared.log.debug(f'Control ControlNet unit: i={num_units} process={u.process.processor_id} model={u.controlnet.model_id} strength={u.strength} guess={u.guess} start={u.start} end={u.end}')
elif unit_type == 'xs' and u.controlnet.model is not None:
active_process.append(u.process)
active_model.append(u.controlnet)
active_strength.append(float(u.strength))
active_start.append(float(u.start))
active_end.append(float(u.end))
shared.log.debug(f'Control ControlNet-XS unit: i={num_units} process={u.process.processor_id} model={u.controlnet.model_id} strength={u.strength} guess={u.guess} start={u.start} end={u.end}')
elif unit_type == 'lite' and u.controlnet.model is not None:
active_process.append(u.process)
active_model.append(u.controlnet)
active_strength.append(float(u.strength))
shared.log.debug(f'Control ControlLLite unit: i={num_units} process={u.process.processor_id} model={u.controlnet.model_id} strength={u.strength} guess={u.guess} start={u.start} end={u.end}')
elif unit_type == 'reference':
p.override = u.override
p.attention = u.attention
p.query_weight = float(u.query_weight)
p.adain_weight = float(u.adain_weight)
p.fidelity = u.fidelity
shared.log.debug('Control Reference unit')
else:
if u.process.processor_id is not None:
active_process.append(u.process)
shared.log.debug(f'Control process unit: i={num_units} process={u.process.processor_id}')
active_strength.append(float(u.strength))
p.ops.append('control')
debug(f'Control active: process={len(active_process)} model={len(active_model)}')
has_models = False
selected_models: List[Union[controlnet.ControlNetModel, xs.ControlNetXSModel, t2iadapter.AdapterModel]] = None
control_conditioning = None
control_guidance_start = None
control_guidance_end = None
if unit_type == 't2i adapter' or unit_type == 'controlnet' or unit_type == 'xs' or unit_type == 'lite':
if len(active_model) == 0:
selected_models = None
elif len(active_model) == 1:
selected_models = active_model[0].model if active_model[0].model is not None else None
p.extra_generation_params["Control model"] = (active_model[0].model_id or '') if active_model[0].model is not None else None
has_models = selected_models is not None
control_conditioning = active_strength[0] if len(active_strength) > 0 else 1 # strength or list[strength]
control_guidance_start = active_start[0] if len(active_start) > 0 else 0
control_guidance_end = active_end[0] if len(active_end) > 0 else 1
else:
selected_models = [m.model for m in active_model if m.model is not None]
p.extra_generation_params["Control model"] = ', '.join([(m.model_id or '') for m in active_model if m.model is not None])
has_models = len(selected_models) > 0
control_conditioning = active_strength[0] if len(active_strength) == 1 else list(active_strength) # strength or list[strength]
control_guidance_start = active_start[0] if len(active_start) == 1 else list(active_start)
control_guidance_end = active_end[0] if len(active_end) == 1 else list(active_end)
p.extra_generation_params["Control conditioning"] = control_conditioning
else:
pass
debug(f'Control: run type={unit_type} models={has_models}')
if unit_type == 't2i adapter' and has_models:
p.extra_generation_params["Control mode"] = 'T2I-Adapter'
p.task_args['adapter_conditioning_scale'] = control_conditioning
instance = t2iadapter.AdapterPipeline(selected_models, shared.sd_model)
pipe = instance.pipeline
if inits is not None:
shared.log.warning('Control: T2I-Adapter does not support separate init image')
elif unit_type == 'controlnet' and has_models:
p.extra_generation_params["Control mode"] = 'ControlNet'
p.task_args['controlnet_conditioning_scale'] = control_conditioning
p.task_args['control_guidance_start'] = control_guidance_start
p.task_args['control_guidance_end'] = control_guidance_end
p.task_args['guess_mode'] = p.guess_mode
instance = controlnet.ControlNetPipeline(selected_models, shared.sd_model)
pipe = instance.pipeline
elif unit_type == 'xs' and has_models:
p.extra_generation_params["Control mode"] = 'ControlNet-XS'
p.controlnet_conditioning_scale = control_conditioning
p.control_guidance_start = control_guidance_start
p.control_guidance_end = control_guidance_end
instance = xs.ControlNetXSPipeline(selected_models, shared.sd_model)
pipe = instance.pipeline
if inits is not None:
shared.log.warning('Control: ControlNet-XS does not support separate init image')
elif unit_type == 'lite' and has_models:
p.extra_generation_params["Control mode"] = 'ControlLLLite'
p.controlnet_conditioning_scale = control_conditioning
instance = lite.ControlLLitePipeline(shared.sd_model)
pipe = instance.pipeline
if inits is not None:
shared.log.warning('Control: ControlLLLite does not support separate init image')
elif unit_type == 'reference':
p.extra_generation_params["Control mode"] = 'Reference'
p.extra_generation_params["Control attention"] = p.attention
p.task_args['reference_attn'] = 'Attention' in p.attention
p.task_args['reference_adain'] = 'Adain' in p.attention
p.task_args['attention_auto_machine_weight'] = p.query_weight
p.task_args['gn_auto_machine_weight'] = p.adain_weight
p.task_args['style_fidelity'] = p.fidelity
instance = reference.ReferencePipeline(shared.sd_model)
pipe = instance.pipeline
if inits is not None:
shared.log.warning('Control: ControlNet-XS does not support separate init image')
else: # run in txt2img/img2img mode
if len(active_strength) > 0:
p.strength = active_strength[0]
pipe = shared.sd_model
instance = None
"""
try:
pipe = diffusers.AutoPipelineForText2Image.from_pipe(shared.sd_model) # use set_diffuser_pipe
except Exception as e:
shared.log.warning(f'Control pipeline create: {e}')
pipe = shared.sd_model
"""
debug(f'Control pipeline: class={pipe.__class__.__name__} args={vars(p)}')
t1, t2, t3 = time.time(), 0, 0
status = True
frame = None
video = None
output_filename = None
index = 0
frames = 0
# set pipeline
if pipe.__class__.__name__ != shared.sd_model.__class__.__name__:
original_pipeline = shared.sd_model
shared.sd_model = pipe
sd_models.move_model(shared.sd_model, shared.device)
shared.sd_model.to(dtype=devices.dtype)
debug(f'Control device={devices.device} dtype={devices.dtype}')
sd_models.copy_diffuser_options(shared.sd_model, original_pipeline) # copy options from original pipeline
sd_models.set_diffuser_options(shared.sd_model)
else:
original_pipeline = None
try:
with devices.inference_context():
if isinstance(inputs, str): # only video, the rest is a list
if input_type == 2: # separate init image
if isinstance(inits, str) and inits != inputs:
shared.log.warning('Control: separate init video not support for video input')
input_type = 1
try:
video = cv2.VideoCapture(inputs)
if not video.isOpened():
yield terminate(f'Control: video open failed: path={inputs}')
return
frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(video.get(cv2.CAP_PROP_FPS))
w, h = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
codec = util.decode_fourcc(video.get(cv2.CAP_PROP_FOURCC))
status, frame = video.read()
if status:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
shared.log.debug(f'Control: input video: path={inputs} frames={frames} fps={fps} size={w}x{h} codec={codec}')
except Exception as e:
yield terminate(f'Control: video open failed: path={inputs} {e}')
return
while status:
processed_image = None
if frame is not None:
inputs = [Image.fromarray(frame)] # cv2 to pil
for i, input_image in enumerate(inputs):
debug(f'Control Control image: {i + 1} of {len(inputs)}')
if shared.state.skipped:
shared.state.skipped = False
continue
if shared.state.interrupted:
shared.state.interrupted = False
yield terminate('Control interrupted')
return
# get input
if isinstance(input_image, str):
try:
input_image = Image.open(inputs[i])
except Exception as e:
shared.log.error(f'Control: image open failed: path={inputs[i]} type=control error={e}')
continue
# match init input
if input_type == 1:
debug('Control Init image: same as control')
init_image = input_image
elif inits is None:
debug('Control Init image: none')
init_image = None
elif isinstance(inits[i], str):
debug(f'Control: init image: {inits[i]}')
try:
init_image = Image.open(inits[i])
except Exception as e:
shared.log.error(f'Control: image open failed: path={inits[i]} type=init error={e}')
continue
else:
debug(f'Control Init image: {i % len(inits) + 1} of {len(inits)}')
init_image = inits[i % len(inits)]
index += 1
if video is not None and index % (video_skip_frames + 1) != 0:
continue
# resize before
if resize_mode_before != 0 and resize_name_before != 'None':
if selected_scale_tab_before == 1 and input_image is not None:
width_before, height_before = int(input_image.width * scale_by_before), int(input_image.height * scale_by_before)
if input_image is not None:
p.extra_generation_params["Control resize"] = f'{resize_name_before}'
debug(f'Control resize: op=before image={input_image} width={width_before} height={height_before} mode={resize_mode_before} name={resize_name_before}')
input_image = images.resize_image(resize_mode_before, input_image, width_before, height_before, resize_name_before)
if input_image is not None and init_image is not None and init_image.size != input_image.size:
debug(f'Control resize init: image={init_image} target={input_image}')
init_image = images.resize_image(resize_mode=1, im=init_image, width=input_image.width, height=input_image.height)
if input_image is not None and p.override is not None and p.override.size != input_image.size:
debug(f'Control resize override: image={p.override} target={input_image}')
p.override = images.resize_image(resize_mode=1, im=p.override, width=input_image.width, height=input_image.height)
if input_image is not None:
p.width = input_image.width
p.height = input_image.height
debug(f'Control: input image={input_image}')
processed_images = []
if mask is not None:
p.extra_generation_params["Mask only"] = masking.opts.mask_only if masking.opts.mask_only else None
p.extra_generation_params["Mask auto"] = masking.opts.auto_mask if masking.opts.auto_mask != 'None' else None
p.extra_generation_params["Mask invert"] = masking.opts.invert if masking.opts.invert else None
p.extra_generation_params["Mask blur"] = masking.opts.mask_blur if masking.opts.mask_blur > 0 else None
p.extra_generation_params["Mask erode"] = masking.opts.mask_erode if masking.opts.mask_erode > 0 else None
p.extra_generation_params["Mask dilate"] = masking.opts.mask_dilate if masking.opts.mask_dilate > 0 else None
p.extra_generation_params["Mask model"] = masking.opts.model if masking.opts.model is not None else None
masked_image = masking.run_mask(input_image=input_image, input_mask=mask, return_type='Masked', invert=p.inpainting_mask_invert==1) if mask is not None else input_image
else:
masked_image = input_image
for i, process in enumerate(active_process): # list[image]
debug(f'Control: i={i+1} process="{process.processor_id}" input={masked_image} override={process.override}')
processed_image = process(
image_input=masked_image,
mode='RGB',
resize_mode=resize_mode_before,
resize_name=resize_name_before,
scale_tab=selected_scale_tab_before,
scale_by=scale_by_before,
)
if processed_image is not None:
processed_images.append(processed_image)
if shared.opts.control_unload_processor and process.processor_id is not None:
processors.config[process.processor_id]['dirty'] = True # to force reload
process.model = None
debug(f'Control processed: {len(processed_images)}')
if len(processed_images) > 0:
p.extra_generation_params["Control process"] = [p.processor_id for p in active_process if p.processor_id is not None]
if len(p.extra_generation_params["Control process"]) == 0:
p.extra_generation_params["Control process"] = None
if any(img is None for img in processed_images):
yield terminate('Control: attempting process but output is none')
return
if len(processed_images) > 1:
processed_image = [np.array(i) for i in processed_images]
processed_image = util.blend(processed_image) # blend all processed images into one
processed_image = Image.fromarray(processed_image)
else:
processed_image = processed_images[0]
if isinstance(selected_models, list) and len(processed_images) == len(selected_models):
debug(f'Control: inputs match: input={len(processed_images)} models={len(selected_models)}')
p.init_images = processed_images
elif isinstance(selected_models, list) and len(processed_images) != len(selected_models):
yield terminate(f'Control: number of inputs does not match: input={len(processed_images)} models={len(selected_models)}')
return
elif selected_models is not None:
if len(processed_images) > 1:
debug('Control: using blended image for single model')
p.init_images = [processed_image]
else:
debug('Control processed: using input direct')
processed_image = input_image
if unit_type == 'reference':
p.ref_image = p.override or input_image
p.task_args.pop('image', None)
p.task_args['ref_image'] = p.ref_image
debug(f'Control: process=None image={p.ref_image}')
if p.ref_image is None:
yield terminate('Control: attempting reference mode but image is none')
return
elif unit_type == 'controlnet' and input_type == 1: # Init image same as control
p.task_args['control_image'] = p.init_images # switch image and control_image
p.task_args['strength'] = p.denoising_strength
p.init_images = [p.override or input_image] * len(active_model)
elif unit_type == 'controlnet' and input_type == 2: # Separate init image
if init_image is None:
shared.log.warning('Control: separate init image not provided')
init_image = input_image
p.task_args['control_image'] = p.init_images # switch image and control_image
p.task_args['strength'] = p.denoising_strength
p.init_images = [init_image] * len(active_model)
if is_generator:
image_txt = f'{processed_image.width}x{processed_image.height}' if processed_image is not None else 'None'
msg = f'process | {index} of {frames if video is not None else len(inputs)} | {"Image" if video is None else "Frame"} {image_txt}'
debug(f'Control yield: {msg}')
yield (None, processed_image, f'Control {msg}')
t2 += time.time() - t2
# determine txt2img, img2img, inpaint pipeline
if unit_type == 'reference': # special case
p.is_control = True
shared.sd_model = sd_models.set_diffuser_pipe(shared.sd_model, sd_models.DiffusersTaskType.TEXT_2_IMAGE)
elif not has_models: # run in txt2img/img2img/inpaint mode
if mask is not None:
p.task_args['strength'] = p.denoising_strength
p.image_mask = mask
p.init_images = [input_image]
shared.sd_model = sd_models.set_diffuser_pipe(shared.sd_model, sd_models.DiffusersTaskType.INPAINTING)
elif processed_image is not None:
p.init_images = [processed_image]
shared.sd_model = sd_models.set_diffuser_pipe(shared.sd_model, sd_models.DiffusersTaskType.IMAGE_2_IMAGE)
else:
p.init_hr(p.scale_by, p.resize_name, force=True)
shared.sd_model = sd_models.set_diffuser_pipe(shared.sd_model, sd_models.DiffusersTaskType.TEXT_2_IMAGE)
elif has_models: # actual control
p.is_control = True
if mask is not None:
p.task_args['strength'] = denoising_strength
p.image_mask = mask
shared.sd_model = sd_models.set_diffuser_pipe(shared.sd_model, sd_models.DiffusersTaskType.INPAINTING) # only controlnet supports inpaint
elif 'control_image' in p.task_args:
shared.sd_model = sd_models.set_diffuser_pipe(shared.sd_model, sd_models.DiffusersTaskType.IMAGE_2_IMAGE) # only controlnet supports img2img
else:
shared.sd_model = sd_models.set_diffuser_pipe(shared.sd_model, sd_models.DiffusersTaskType.TEXT_2_IMAGE)
if hasattr(p, 'init_images') and p.init_images is not None:
p.task_args['image'] = p.init_images # need to set explicitly for txt2img
del p.init_images
if unit_type == 'lite':
p.init_image = [input_image]
instance.apply(selected_models, processed_image, control_conditioning)
if hasattr(p, 'init_images') and p.init_images is None: # delete empty
del p.init_images
# final check
if has_models:
if unit_type in ['controlnet', 't2i adapter', 'lite', 'xs'] and p.task_args.get('image', None) is None and getattr(p, 'init_images', None) is None:
yield terminate(f'Control: mode={p.extra_generation_params.get("Control mode", None)} input image is none')
return
# resize mask
if mask is not None and resize_mode_mask != 0 and resize_name_mask != 'None':
if selected_scale_tab_mask == 1:
width_mask, height_mask = int(input_image.width * scale_by_before), int(input_image.height * scale_by_before)
p.width, p.height = width_mask, height_mask
debug(f'Control resize: op=mask image={mask} width={width_mask} height={height_mask} mode={resize_mode_mask} name={resize_name_mask}')
# pipeline
output = None
if pipe is not None: # run new pipeline
pipe.restore_pipeline = restore_pipeline
debug(f'Control exec pipeline: task={sd_models.get_diffusers_task(pipe)} class={pipe.__class__}')
debug(f'Control exec pipeline: p={vars(p)}')
debug(f'Control exec pipeline: args={p.task_args} image={p.task_args.get("image", None)} control={p.task_args.get("control_image", None)} mask={p.task_args.get("mask_image", None) or p.image_mask} ref={p.task_args.get("ref_image", None)}')
if sd_models.get_diffusers_task(pipe) != sd_models.DiffusersTaskType.TEXT_2_IMAGE: # force vae back to gpu if not in txt2img mode
sd_models.move_model(pipe.vae, devices.device)
p.scripts = scripts.scripts_control
p.script_args = input_script_args
processed = p.scripts.run(p, *input_script_args)
if processed is None:
processed: processing.Processed = processing.process_images(p) # run actual pipeline
output = processed.images if processed is not None else None
# output = pipe(**vars(p)).images # alternative direct pipe exec call
else: # blend all processed images and return
output = [processed_image]
t3 += time.time() - t3
# outputs
output = output or []
for i, output_image in enumerate(output):
if output_image is not None:
# resize after
is_grid = len(output) == p.batch_size * p.n_iter + 1 and i == 0
if selected_scale_tab_after == 1:
width_after = int(output_image.width * scale_by_after)
height_after = int(output_image.height * scale_by_after)
if resize_mode_after != 0 and resize_name_after != 'None' and not is_grid:
debug(f'Control resize: op=after image={output_image} width={width_after} height={height_after} mode={resize_mode_after} name={resize_name_after}')
output_image = images.resize_image(resize_mode_after, output_image, width_after, height_after, resize_name_after)
output_images.append(output_image)
if shared.opts.include_mask:
if processed_image is not None and isinstance(processed_image, Image.Image):
output_images.append(processed_image)
if is_generator:
image_txt = f'{output_image.width}x{output_image.height}' if output_image is not None else 'None'
if video is not None:
msg = f'Control output | {index} of {frames} skip {video_skip_frames} | Frame {image_txt}'
else:
msg = f'Control output | {index} of {len(inputs)} | Image {image_txt}'
yield (output_image, processed_image, msg) # result is control_output, proces_output
if video is not None and frame is not None:
status, frame = video.read()
if status:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
debug(f'Control: video frame={index} frames={frames} status={status} skip={index % (video_skip_frames + 1)} progress={index/frames:.2f}')
else:
status = False
if video is not None:
video.release()
shared.log.info(f'Control: pipeline units={len(active_model)} process={len(active_process)} time={t3-t0:.2f} init={t1-t0:.2f} proc={t2-t1:.2f} ctrl={t3-t2:.2f} outputs={len(output_images)}')
except Exception as e:
shared.log.error(f'Control pipeline failed: type={unit_type} units={len(active_model)} error={e}')
errors.display(e, 'Control')
if len(output_images) == 0:
output_images = None
image_txt = 'images=None'
else:
image_str = [f'{image.width}x{image.height}' for image in output_images]
image_txt = f'| Images {len(output_images)} | Size {" ".join(image_str)}'
p.init_images = output_images # may be used for hires
if video_type != 'None' and isinstance(output_images, list):
p.do_not_save_grid = True # pylint: disable=attribute-defined-outside-init
output_filename = images.save_video(p, filename=None, images=output_images, video_type=video_type, duration=video_duration, loop=video_loop, pad=video_pad, interpolate=video_interpolate, sync=True)
image_txt = f'| Frames {len(output_images)} | Size {output_images[0].width}x{output_images[0].height}'
image_txt += f' | {util.dict2str(p.extra_generation_params)}'
restore_pipeline()
debug(f'Control ready: {image_txt}')
if is_generator:
yield (output_images, processed_image, f'Control ready {image_txt}', output_filename)
else:
return (output_images, processed_image, f'Control ready {image_txt}', output_filename)