Spaces:
Runtime error
Runtime error
File size: 35,710 Bytes
c19ca42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 |
import os
import time
from typing import List, Union
import cv2
import numpy as np
from PIL import Image
from modules.control import util # helper functions
from modules.control import unit # control units
from modules.control import processors # image preprocessors
from modules.control.units import controlnet # lllyasviel ControlNet
from modules.control.units import xs # VisLearn ControlNet-XS
from modules.control.units import lite # Kohya ControlLLLite
from modules.control.units import t2iadapter # TencentARC T2I-Adapter
from modules.control.units import reference # ControlNet-Reference
from modules import devices, shared, errors, processing, images, sd_models, scripts, masking
from modules.processing_class import StableDiffusionProcessingControl
debug = shared.log.trace if os.environ.get('SD_CONTROL_DEBUG', None) is not None else lambda *args, **kwargs: None
debug('Trace: CONTROL')
pipe = None
instance = None
original_pipeline = None
def restore_pipeline():
global pipe, instance # pylint: disable=global-statement
if instance is not None and hasattr(instance, 'restore'):
instance.restore()
if original_pipeline is not None and (original_pipeline.__class__.__name__ != shared.sd_model.__class__.__name__):
shared.log.debug(f'Control restored pipeline: class={shared.sd_model.__class__.__name__} to={original_pipeline.__class__.__name__}')
shared.sd_model = original_pipeline
pipe = None
instance = None
devices.torch_gc()
def terminate(msg):
restore_pipeline()
shared.log.error(f'Control terminated: {msg}')
return msg
def control_run(units: List[unit.Unit], inputs, inits, mask, unit_type: str, is_generator: bool, input_type: int,
prompt, negative, styles, steps, sampler_index,
seed, subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w,
cfg_scale, clip_skip, image_cfg_scale, diffusers_guidance_rescale, sag_scale, cfg_end, full_quality, restore_faces, tiling,
hdr_mode, hdr_brightness, hdr_color, hdr_sharpen, hdr_clamp, hdr_boundary, hdr_threshold, hdr_maximize, hdr_max_center, hdr_max_boundry, hdr_color_picker, hdr_tint_ratio,
resize_mode_before, resize_name_before, width_before, height_before, scale_by_before, selected_scale_tab_before,
resize_mode_after, resize_name_after, width_after, height_after, scale_by_after, selected_scale_tab_after,
resize_mode_mask, resize_name_mask, width_mask, height_mask, scale_by_mask, selected_scale_tab_mask,
denoising_strength, batch_count, batch_size,
enable_hr, hr_sampler_index, hr_denoising_strength, hr_upscaler, hr_force, hr_second_pass_steps, hr_scale, hr_resize_x, hr_resize_y, refiner_steps,
refiner_start, refiner_prompt, refiner_negative,
video_skip_frames, video_type, video_duration, video_loop, video_pad, video_interpolate,
*input_script_args # pylint: disable=unused-argument
):
global instance, pipe, original_pipeline # pylint: disable=global-statement
debug(f'Control: type={unit_type} input={inputs} init={inits} type={input_type}')
if inputs is None or (type(inputs) is list and len(inputs) == 0):
inputs = [None]
output_images: List[Image.Image] = [] # output images
active_process: List[processors.Processor] = [] # all active preprocessors
active_model: List[Union[controlnet.ControlNet, xs.ControlNetXS, t2iadapter.Adapter]] = [] # all active models
active_strength: List[float] = [] # strength factors for all active models
active_start: List[float] = [] # start step for all active models
active_end: List[float] = [] # end step for all active models
processed_image: Image.Image = None # last processed image
if mask is not None and input_type == 0:
input_type = 1 # inpaint always requires control_image
p = StableDiffusionProcessingControl(
prompt = prompt,
negative_prompt = negative,
styles = styles,
steps = steps,
n_iter = batch_count,
batch_size = batch_size,
sampler_name = processing.get_sampler_name(sampler_index),
seed = seed,
subseed = subseed,
subseed_strength = subseed_strength,
seed_resize_from_h = seed_resize_from_h,
seed_resize_from_w = seed_resize_from_w,
# advanced
cfg_scale = cfg_scale,
clip_skip = clip_skip,
image_cfg_scale = image_cfg_scale,
diffusers_guidance_rescale = diffusers_guidance_rescale,
sag_scale = sag_scale,
full_quality = full_quality,
restore_faces = restore_faces,
tiling = tiling,
# resize
resize_mode = resize_mode_before if resize_name_before != 'None' else 0,
resize_name = resize_name_before,
scale_by = scale_by_before,
selected_scale_tab = selected_scale_tab_before,
denoising_strength = denoising_strength,
# inpaint
inpaint_full_res = masking.opts.mask_only,
inpainting_mask_invert = 1 if masking.opts.invert else 0,
inpainting_fill = 1,
# hdr
hdr_mode=hdr_mode, hdr_brightness=hdr_brightness, hdr_color=hdr_color, hdr_sharpen=hdr_sharpen, hdr_clamp=hdr_clamp,
hdr_boundary=hdr_boundary, hdr_threshold=hdr_threshold, hdr_maximize=hdr_maximize, hdr_max_center=hdr_max_center, hdr_max_boundry=hdr_max_boundry, hdr_color_picker=hdr_color_picker, hdr_tint_ratio=hdr_tint_ratio,
# path
outpath_samples=shared.opts.outdir_samples or shared.opts.outdir_control_samples,
outpath_grids=shared.opts.outdir_grids or shared.opts.outdir_control_grids,
)
processing.process_init(p)
# set initial resolution
if resize_mode_before != 0 or inputs is None or inputs == [None]:
p.width, p.height = width_before, height_before # pylint: disable=attribute-defined-outside-init
else:
del p.width
del p.height
# hires/refine defined outside of main init
p.enable_hr = enable_hr
p.hr_sampler_name = processing.get_sampler_name(hr_sampler_index)
p.hr_denoising_strength = hr_denoising_strength
p.hr_upscaler = hr_upscaler
p.hr_force = hr_force
p.hr_second_pass_steps = hr_second_pass_steps
p.hr_scale = hr_scale
p.hr_resize_x = hr_resize_x
p.hr_resize_y = hr_resize_y
p.refiner_steps = refiner_steps
p.refiner_start = refiner_start
p.refiner_prompt = refiner_prompt
p.refiner_negative = refiner_negative
if p.enable_hr and (p.hr_resize_x == 0 or p.hr_resize_y == 0):
p.hr_upscale_to_x, p.hr_upscale_to_y = 8 * int(p.width * p.hr_scale / 8), 8 * int(p.height * p.hr_scale / 8)
t0 = time.time()
num_units = 0
for u in units:
if u.type != unit_type:
continue
num_units += 1
debug(f'Control unit: i={num_units} type={u.type} enabled={u.enabled}')
if not u.enabled:
continue
if unit_type == 't2i adapter' and u.adapter.model is not None:
active_process.append(u.process)
active_model.append(u.adapter)
active_strength.append(float(u.strength))
p.adapter_conditioning_factor = u.factor
shared.log.debug(f'Control T2I-Adapter unit: i={num_units} process={u.process.processor_id} model={u.adapter.model_id} strength={u.strength} factor={u.factor}')
elif unit_type == 'controlnet' and u.controlnet.model is not None:
active_process.append(u.process)
active_model.append(u.controlnet)
active_strength.append(float(u.strength))
active_start.append(float(u.start))
active_end.append(float(u.end))
p.guess_mode = u.guess
shared.log.debug(f'Control ControlNet unit: i={num_units} process={u.process.processor_id} model={u.controlnet.model_id} strength={u.strength} guess={u.guess} start={u.start} end={u.end}')
elif unit_type == 'xs' and u.controlnet.model is not None:
active_process.append(u.process)
active_model.append(u.controlnet)
active_strength.append(float(u.strength))
active_start.append(float(u.start))
active_end.append(float(u.end))
shared.log.debug(f'Control ControlNet-XS unit: i={num_units} process={u.process.processor_id} model={u.controlnet.model_id} strength={u.strength} guess={u.guess} start={u.start} end={u.end}')
elif unit_type == 'lite' and u.controlnet.model is not None:
active_process.append(u.process)
active_model.append(u.controlnet)
active_strength.append(float(u.strength))
shared.log.debug(f'Control ControlLLite unit: i={num_units} process={u.process.processor_id} model={u.controlnet.model_id} strength={u.strength} guess={u.guess} start={u.start} end={u.end}')
elif unit_type == 'reference':
p.override = u.override
p.attention = u.attention
p.query_weight = float(u.query_weight)
p.adain_weight = float(u.adain_weight)
p.fidelity = u.fidelity
shared.log.debug('Control Reference unit')
else:
if u.process.processor_id is not None:
active_process.append(u.process)
shared.log.debug(f'Control process unit: i={num_units} process={u.process.processor_id}')
active_strength.append(float(u.strength))
p.ops.append('control')
debug(f'Control active: process={len(active_process)} model={len(active_model)}')
has_models = False
selected_models: List[Union[controlnet.ControlNetModel, xs.ControlNetXSModel, t2iadapter.AdapterModel]] = None
control_conditioning = None
control_guidance_start = None
control_guidance_end = None
if unit_type == 't2i adapter' or unit_type == 'controlnet' or unit_type == 'xs' or unit_type == 'lite':
if len(active_model) == 0:
selected_models = None
elif len(active_model) == 1:
selected_models = active_model[0].model if active_model[0].model is not None else None
p.extra_generation_params["Control model"] = (active_model[0].model_id or '') if active_model[0].model is not None else None
has_models = selected_models is not None
control_conditioning = active_strength[0] if len(active_strength) > 0 else 1 # strength or list[strength]
control_guidance_start = active_start[0] if len(active_start) > 0 else 0
control_guidance_end = active_end[0] if len(active_end) > 0 else 1
else:
selected_models = [m.model for m in active_model if m.model is not None]
p.extra_generation_params["Control model"] = ', '.join([(m.model_id or '') for m in active_model if m.model is not None])
has_models = len(selected_models) > 0
control_conditioning = active_strength[0] if len(active_strength) == 1 else list(active_strength) # strength or list[strength]
control_guidance_start = active_start[0] if len(active_start) == 1 else list(active_start)
control_guidance_end = active_end[0] if len(active_end) == 1 else list(active_end)
p.extra_generation_params["Control conditioning"] = control_conditioning
else:
pass
debug(f'Control: run type={unit_type} models={has_models}')
if unit_type == 't2i adapter' and has_models:
p.extra_generation_params["Control mode"] = 'T2I-Adapter'
p.task_args['adapter_conditioning_scale'] = control_conditioning
instance = t2iadapter.AdapterPipeline(selected_models, shared.sd_model)
pipe = instance.pipeline
if inits is not None:
shared.log.warning('Control: T2I-Adapter does not support separate init image')
elif unit_type == 'controlnet' and has_models:
p.extra_generation_params["Control mode"] = 'ControlNet'
p.task_args['controlnet_conditioning_scale'] = control_conditioning
p.task_args['control_guidance_start'] = control_guidance_start
p.task_args['control_guidance_end'] = control_guidance_end
p.task_args['guess_mode'] = p.guess_mode
instance = controlnet.ControlNetPipeline(selected_models, shared.sd_model)
pipe = instance.pipeline
elif unit_type == 'xs' and has_models:
p.extra_generation_params["Control mode"] = 'ControlNet-XS'
p.controlnet_conditioning_scale = control_conditioning
p.control_guidance_start = control_guidance_start
p.control_guidance_end = control_guidance_end
instance = xs.ControlNetXSPipeline(selected_models, shared.sd_model)
pipe = instance.pipeline
if inits is not None:
shared.log.warning('Control: ControlNet-XS does not support separate init image')
elif unit_type == 'lite' and has_models:
p.extra_generation_params["Control mode"] = 'ControlLLLite'
p.controlnet_conditioning_scale = control_conditioning
instance = lite.ControlLLitePipeline(shared.sd_model)
pipe = instance.pipeline
if inits is not None:
shared.log.warning('Control: ControlLLLite does not support separate init image')
elif unit_type == 'reference':
p.extra_generation_params["Control mode"] = 'Reference'
p.extra_generation_params["Control attention"] = p.attention
p.task_args['reference_attn'] = 'Attention' in p.attention
p.task_args['reference_adain'] = 'Adain' in p.attention
p.task_args['attention_auto_machine_weight'] = p.query_weight
p.task_args['gn_auto_machine_weight'] = p.adain_weight
p.task_args['style_fidelity'] = p.fidelity
instance = reference.ReferencePipeline(shared.sd_model)
pipe = instance.pipeline
if inits is not None:
shared.log.warning('Control: ControlNet-XS does not support separate init image')
else: # run in txt2img/img2img mode
if len(active_strength) > 0:
p.strength = active_strength[0]
pipe = shared.sd_model
instance = None
"""
try:
pipe = diffusers.AutoPipelineForText2Image.from_pipe(shared.sd_model) # use set_diffuser_pipe
except Exception as e:
shared.log.warning(f'Control pipeline create: {e}')
pipe = shared.sd_model
"""
debug(f'Control pipeline: class={pipe.__class__.__name__} args={vars(p)}')
t1, t2, t3 = time.time(), 0, 0
status = True
frame = None
video = None
output_filename = None
index = 0
frames = 0
# set pipeline
if pipe.__class__.__name__ != shared.sd_model.__class__.__name__:
original_pipeline = shared.sd_model
shared.sd_model = pipe
sd_models.move_model(shared.sd_model, shared.device)
shared.sd_model.to(dtype=devices.dtype)
debug(f'Control device={devices.device} dtype={devices.dtype}')
sd_models.copy_diffuser_options(shared.sd_model, original_pipeline) # copy options from original pipeline
sd_models.set_diffuser_options(shared.sd_model)
else:
original_pipeline = None
try:
with devices.inference_context():
if isinstance(inputs, str): # only video, the rest is a list
if input_type == 2: # separate init image
if isinstance(inits, str) and inits != inputs:
shared.log.warning('Control: separate init video not support for video input')
input_type = 1
try:
video = cv2.VideoCapture(inputs)
if not video.isOpened():
yield terminate(f'Control: video open failed: path={inputs}')
return
frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(video.get(cv2.CAP_PROP_FPS))
w, h = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
codec = util.decode_fourcc(video.get(cv2.CAP_PROP_FOURCC))
status, frame = video.read()
if status:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
shared.log.debug(f'Control: input video: path={inputs} frames={frames} fps={fps} size={w}x{h} codec={codec}')
except Exception as e:
yield terminate(f'Control: video open failed: path={inputs} {e}')
return
while status:
processed_image = None
if frame is not None:
inputs = [Image.fromarray(frame)] # cv2 to pil
for i, input_image in enumerate(inputs):
debug(f'Control Control image: {i + 1} of {len(inputs)}')
if shared.state.skipped:
shared.state.skipped = False
continue
if shared.state.interrupted:
shared.state.interrupted = False
yield terminate('Control interrupted')
return
# get input
if isinstance(input_image, str):
try:
input_image = Image.open(inputs[i])
except Exception as e:
shared.log.error(f'Control: image open failed: path={inputs[i]} type=control error={e}')
continue
# match init input
if input_type == 1:
debug('Control Init image: same as control')
init_image = input_image
elif inits is None:
debug('Control Init image: none')
init_image = None
elif isinstance(inits[i], str):
debug(f'Control: init image: {inits[i]}')
try:
init_image = Image.open(inits[i])
except Exception as e:
shared.log.error(f'Control: image open failed: path={inits[i]} type=init error={e}')
continue
else:
debug(f'Control Init image: {i % len(inits) + 1} of {len(inits)}')
init_image = inits[i % len(inits)]
index += 1
if video is not None and index % (video_skip_frames + 1) != 0:
continue
# resize before
if resize_mode_before != 0 and resize_name_before != 'None':
if selected_scale_tab_before == 1 and input_image is not None:
width_before, height_before = int(input_image.width * scale_by_before), int(input_image.height * scale_by_before)
if input_image is not None:
p.extra_generation_params["Control resize"] = f'{resize_name_before}'
debug(f'Control resize: op=before image={input_image} width={width_before} height={height_before} mode={resize_mode_before} name={resize_name_before}')
input_image = images.resize_image(resize_mode_before, input_image, width_before, height_before, resize_name_before)
if input_image is not None and init_image is not None and init_image.size != input_image.size:
debug(f'Control resize init: image={init_image} target={input_image}')
init_image = images.resize_image(resize_mode=1, im=init_image, width=input_image.width, height=input_image.height)
if input_image is not None and p.override is not None and p.override.size != input_image.size:
debug(f'Control resize override: image={p.override} target={input_image}')
p.override = images.resize_image(resize_mode=1, im=p.override, width=input_image.width, height=input_image.height)
if input_image is not None:
p.width = input_image.width
p.height = input_image.height
debug(f'Control: input image={input_image}')
processed_images = []
if mask is not None:
p.extra_generation_params["Mask only"] = masking.opts.mask_only if masking.opts.mask_only else None
p.extra_generation_params["Mask auto"] = masking.opts.auto_mask if masking.opts.auto_mask != 'None' else None
p.extra_generation_params["Mask invert"] = masking.opts.invert if masking.opts.invert else None
p.extra_generation_params["Mask blur"] = masking.opts.mask_blur if masking.opts.mask_blur > 0 else None
p.extra_generation_params["Mask erode"] = masking.opts.mask_erode if masking.opts.mask_erode > 0 else None
p.extra_generation_params["Mask dilate"] = masking.opts.mask_dilate if masking.opts.mask_dilate > 0 else None
p.extra_generation_params["Mask model"] = masking.opts.model if masking.opts.model is not None else None
masked_image = masking.run_mask(input_image=input_image, input_mask=mask, return_type='Masked', invert=p.inpainting_mask_invert==1) if mask is not None else input_image
else:
masked_image = input_image
for i, process in enumerate(active_process): # list[image]
debug(f'Control: i={i+1} process="{process.processor_id}" input={masked_image} override={process.override}')
processed_image = process(
image_input=masked_image,
mode='RGB',
resize_mode=resize_mode_before,
resize_name=resize_name_before,
scale_tab=selected_scale_tab_before,
scale_by=scale_by_before,
)
if processed_image is not None:
processed_images.append(processed_image)
if shared.opts.control_unload_processor and process.processor_id is not None:
processors.config[process.processor_id]['dirty'] = True # to force reload
process.model = None
debug(f'Control processed: {len(processed_images)}')
if len(processed_images) > 0:
p.extra_generation_params["Control process"] = [p.processor_id for p in active_process if p.processor_id is not None]
if len(p.extra_generation_params["Control process"]) == 0:
p.extra_generation_params["Control process"] = None
if any(img is None for img in processed_images):
yield terminate('Control: attempting process but output is none')
return
if len(processed_images) > 1:
processed_image = [np.array(i) for i in processed_images]
processed_image = util.blend(processed_image) # blend all processed images into one
processed_image = Image.fromarray(processed_image)
else:
processed_image = processed_images[0]
if isinstance(selected_models, list) and len(processed_images) == len(selected_models):
debug(f'Control: inputs match: input={len(processed_images)} models={len(selected_models)}')
p.init_images = processed_images
elif isinstance(selected_models, list) and len(processed_images) != len(selected_models):
yield terminate(f'Control: number of inputs does not match: input={len(processed_images)} models={len(selected_models)}')
return
elif selected_models is not None:
if len(processed_images) > 1:
debug('Control: using blended image for single model')
p.init_images = [processed_image]
else:
debug('Control processed: using input direct')
processed_image = input_image
if unit_type == 'reference':
p.ref_image = p.override or input_image
p.task_args.pop('image', None)
p.task_args['ref_image'] = p.ref_image
debug(f'Control: process=None image={p.ref_image}')
if p.ref_image is None:
yield terminate('Control: attempting reference mode but image is none')
return
elif unit_type == 'controlnet' and input_type == 1: # Init image same as control
p.task_args['control_image'] = p.init_images # switch image and control_image
p.task_args['strength'] = p.denoising_strength
p.init_images = [p.override or input_image] * len(active_model)
elif unit_type == 'controlnet' and input_type == 2: # Separate init image
if init_image is None:
shared.log.warning('Control: separate init image not provided')
init_image = input_image
p.task_args['control_image'] = p.init_images # switch image and control_image
p.task_args['strength'] = p.denoising_strength
p.init_images = [init_image] * len(active_model)
if is_generator:
image_txt = f'{processed_image.width}x{processed_image.height}' if processed_image is not None else 'None'
msg = f'process | {index} of {frames if video is not None else len(inputs)} | {"Image" if video is None else "Frame"} {image_txt}'
debug(f'Control yield: {msg}')
yield (None, processed_image, f'Control {msg}')
t2 += time.time() - t2
# determine txt2img, img2img, inpaint pipeline
if unit_type == 'reference': # special case
p.is_control = True
shared.sd_model = sd_models.set_diffuser_pipe(shared.sd_model, sd_models.DiffusersTaskType.TEXT_2_IMAGE)
elif not has_models: # run in txt2img/img2img/inpaint mode
if mask is not None:
p.task_args['strength'] = p.denoising_strength
p.image_mask = mask
p.init_images = [input_image]
shared.sd_model = sd_models.set_diffuser_pipe(shared.sd_model, sd_models.DiffusersTaskType.INPAINTING)
elif processed_image is not None:
p.init_images = [processed_image]
shared.sd_model = sd_models.set_diffuser_pipe(shared.sd_model, sd_models.DiffusersTaskType.IMAGE_2_IMAGE)
else:
p.init_hr(p.scale_by, p.resize_name, force=True)
shared.sd_model = sd_models.set_diffuser_pipe(shared.sd_model, sd_models.DiffusersTaskType.TEXT_2_IMAGE)
elif has_models: # actual control
p.is_control = True
if mask is not None:
p.task_args['strength'] = denoising_strength
p.image_mask = mask
shared.sd_model = sd_models.set_diffuser_pipe(shared.sd_model, sd_models.DiffusersTaskType.INPAINTING) # only controlnet supports inpaint
elif 'control_image' in p.task_args:
shared.sd_model = sd_models.set_diffuser_pipe(shared.sd_model, sd_models.DiffusersTaskType.IMAGE_2_IMAGE) # only controlnet supports img2img
else:
shared.sd_model = sd_models.set_diffuser_pipe(shared.sd_model, sd_models.DiffusersTaskType.TEXT_2_IMAGE)
if hasattr(p, 'init_images') and p.init_images is not None:
p.task_args['image'] = p.init_images # need to set explicitly for txt2img
del p.init_images
if unit_type == 'lite':
p.init_image = [input_image]
instance.apply(selected_models, processed_image, control_conditioning)
if hasattr(p, 'init_images') and p.init_images is None: # delete empty
del p.init_images
# final check
if has_models:
if unit_type in ['controlnet', 't2i adapter', 'lite', 'xs'] and p.task_args.get('image', None) is None and getattr(p, 'init_images', None) is None:
yield terminate(f'Control: mode={p.extra_generation_params.get("Control mode", None)} input image is none')
return
# resize mask
if mask is not None and resize_mode_mask != 0 and resize_name_mask != 'None':
if selected_scale_tab_mask == 1:
width_mask, height_mask = int(input_image.width * scale_by_before), int(input_image.height * scale_by_before)
p.width, p.height = width_mask, height_mask
debug(f'Control resize: op=mask image={mask} width={width_mask} height={height_mask} mode={resize_mode_mask} name={resize_name_mask}')
# pipeline
output = None
if pipe is not None: # run new pipeline
pipe.restore_pipeline = restore_pipeline
debug(f'Control exec pipeline: task={sd_models.get_diffusers_task(pipe)} class={pipe.__class__}')
debug(f'Control exec pipeline: p={vars(p)}')
debug(f'Control exec pipeline: args={p.task_args} image={p.task_args.get("image", None)} control={p.task_args.get("control_image", None)} mask={p.task_args.get("mask_image", None) or p.image_mask} ref={p.task_args.get("ref_image", None)}')
if sd_models.get_diffusers_task(pipe) != sd_models.DiffusersTaskType.TEXT_2_IMAGE: # force vae back to gpu if not in txt2img mode
sd_models.move_model(pipe.vae, devices.device)
p.scripts = scripts.scripts_control
p.script_args = input_script_args
processed = p.scripts.run(p, *input_script_args)
if processed is None:
processed: processing.Processed = processing.process_images(p) # run actual pipeline
output = processed.images if processed is not None else None
# output = pipe(**vars(p)).images # alternative direct pipe exec call
else: # blend all processed images and return
output = [processed_image]
t3 += time.time() - t3
# outputs
output = output or []
for i, output_image in enumerate(output):
if output_image is not None:
# resize after
is_grid = len(output) == p.batch_size * p.n_iter + 1 and i == 0
if selected_scale_tab_after == 1:
width_after = int(output_image.width * scale_by_after)
height_after = int(output_image.height * scale_by_after)
if resize_mode_after != 0 and resize_name_after != 'None' and not is_grid:
debug(f'Control resize: op=after image={output_image} width={width_after} height={height_after} mode={resize_mode_after} name={resize_name_after}')
output_image = images.resize_image(resize_mode_after, output_image, width_after, height_after, resize_name_after)
output_images.append(output_image)
if shared.opts.include_mask:
if processed_image is not None and isinstance(processed_image, Image.Image):
output_images.append(processed_image)
if is_generator:
image_txt = f'{output_image.width}x{output_image.height}' if output_image is not None else 'None'
if video is not None:
msg = f'Control output | {index} of {frames} skip {video_skip_frames} | Frame {image_txt}'
else:
msg = f'Control output | {index} of {len(inputs)} | Image {image_txt}'
yield (output_image, processed_image, msg) # result is control_output, proces_output
if video is not None and frame is not None:
status, frame = video.read()
if status:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
debug(f'Control: video frame={index} frames={frames} status={status} skip={index % (video_skip_frames + 1)} progress={index/frames:.2f}')
else:
status = False
if video is not None:
video.release()
shared.log.info(f'Control: pipeline units={len(active_model)} process={len(active_process)} time={t3-t0:.2f} init={t1-t0:.2f} proc={t2-t1:.2f} ctrl={t3-t2:.2f} outputs={len(output_images)}')
except Exception as e:
shared.log.error(f'Control pipeline failed: type={unit_type} units={len(active_model)} error={e}')
errors.display(e, 'Control')
if len(output_images) == 0:
output_images = None
image_txt = 'images=None'
else:
image_str = [f'{image.width}x{image.height}' for image in output_images]
image_txt = f'| Images {len(output_images)} | Size {" ".join(image_str)}'
p.init_images = output_images # may be used for hires
if video_type != 'None' and isinstance(output_images, list):
p.do_not_save_grid = True # pylint: disable=attribute-defined-outside-init
output_filename = images.save_video(p, filename=None, images=output_images, video_type=video_type, duration=video_duration, loop=video_loop, pad=video_pad, interpolate=video_interpolate, sync=True)
image_txt = f'| Frames {len(output_images)} | Size {output_images[0].width}x{output_images[0].height}'
image_txt += f' | {util.dict2str(p.extra_generation_params)}'
restore_pipeline()
debug(f'Control ready: {image_txt}')
if is_generator:
yield (output_images, processed_image, f'Control ready {image_txt}', output_filename)
else:
return (output_images, processed_image, f'Control ready {image_txt}', output_filename)
|