bilegentile's picture
Upload folder using huggingface_hub
c19ca42 verified
from typing import Tuple, List
import torch
from torch import nn
from torch.nn import functional as F
from scripts.cldm import PlugableControlModel, ControlNet, zero_module, conv_nd, TimestepEmbedSequential
class PlugableSparseCtrlModel(PlugableControlModel):
def __init__(self, config, state_dict=None):
nn.Module.__init__(self)
self.config = config
self.control_model = SparseCtrl(**self.config).cpu()
if state_dict is not None:
self.control_model.load_state_dict(state_dict, strict=False)
self.gpu_component = None
class CondEmbed(nn.Module):
def __init__(
self,
dims: int,
conditioning_embedding_channels: int,
conditioning_channels: int = 3,
block_out_channels: Tuple[int] = (16, 32, 96, 256),
):
super().__init__()
self.conv_in = conv_nd(dims, conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
self.blocks = nn.ModuleList([])
for i in range(len(block_out_channels) - 1):
channel_in = block_out_channels[i]
channel_out = block_out_channels[i + 1]
self.blocks.append(conv_nd(dims, channel_in, channel_in, kernel_size=3, padding=1))
self.blocks.append(conv_nd(dims, channel_in, channel_out, kernel_size=3, padding=1, stride=2))
self.conv_out = zero_module(conv_nd(dims, block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1))
def forward(self, conditioning):
embedding = self.conv_in(conditioning)
embedding = F.silu(embedding)
for block in self.blocks:
embedding = block(embedding)
embedding = F.silu(embedding)
embedding = self.conv_out(embedding)
return embedding
class SparseCtrl(ControlNet):
def __init__(self, use_simplified_condition_embedding=True, conditioning_channels=4, **kwargs):
super().__init__(hint_channels=1, **kwargs) # we don't need hint_channels, but we need to set it to 1 to avoid errors
self.use_simplified_condition_embedding = use_simplified_condition_embedding
if use_simplified_condition_embedding:
self.input_hint_block = TimestepEmbedSequential(
zero_module(conv_nd(self.dims, conditioning_channels, kwargs.get("model_channels", 320), kernel_size=3, padding=1)))
else:
self.input_hint_block = TimestepEmbedSequential(
CondEmbed(
self.dims, kwargs.get("model_channels", 320),
conditioning_channels=conditioning_channels,))
def load_state_dict(self, state_dict, strict=False):
mm_dict = {}
cn_dict = {}
for k, v in state_dict.items():
if "motion_modules" in k:
mm_dict[k] = v
else:
cn_dict[k] = v
super().load_state_dict(cn_dict, strict=True)
from scripts.animatediff_mm import MotionWrapper, MotionModuleType
sparsectrl_mm = MotionWrapper("", "", MotionModuleType.SparseCtrl)
sparsectrl_mm.load_state_dict(mm_dict, strict=True)
for mm_idx, unet_idx in enumerate([1, 2, 4, 5, 7, 8, 10, 11]):
mm_idx0, mm_idx1 = mm_idx // 2, mm_idx % 2
mm_inject = getattr(sparsectrl_mm.down_blocks[mm_idx0], "motion_modules")[mm_idx1]
self.input_blocks[unet_idx].append(mm_inject)
@staticmethod
def create_cond_mask(control_image_index: List[int], control_image_latents: torch.Tensor, video_length: int):
hint_cond = torch.zeros((video_length, *control_image_latents.shape[1:]), device=control_image_latents.device, dtype=control_image_latents.dtype)
hint_cond[control_image_index] = control_image_latents[:len(control_image_index)]
hint_cond_mask = torch.zeros((hint_cond.shape[0], 1, *hint_cond.shape[2:]), device=control_image_latents.device, dtype=control_image_latents.dtype)
hint_cond_mask[control_image_index] = 1.0
return torch.cat([hint_cond, hint_cond_mask], dim=1)
def forward(self, x, hint, timesteps, context, y=None, **kwargs):
return super().forward(torch.zeros_like(x, device=x.device), hint, timesteps, context, y=y, **kwargs)