from typing import Tuple, List import torch from torch import nn from torch.nn import functional as F from scripts.cldm import PlugableControlModel, ControlNet, zero_module, conv_nd, TimestepEmbedSequential class PlugableSparseCtrlModel(PlugableControlModel): def __init__(self, config, state_dict=None): nn.Module.__init__(self) self.config = config self.control_model = SparseCtrl(**self.config).cpu() if state_dict is not None: self.control_model.load_state_dict(state_dict, strict=False) self.gpu_component = None class CondEmbed(nn.Module): def __init__( self, dims: int, conditioning_embedding_channels: int, conditioning_channels: int = 3, block_out_channels: Tuple[int] = (16, 32, 96, 256), ): super().__init__() self.conv_in = conv_nd(dims, conditioning_channels, block_out_channels[0], kernel_size=3, padding=1) self.blocks = nn.ModuleList([]) for i in range(len(block_out_channels) - 1): channel_in = block_out_channels[i] channel_out = block_out_channels[i + 1] self.blocks.append(conv_nd(dims, channel_in, channel_in, kernel_size=3, padding=1)) self.blocks.append(conv_nd(dims, channel_in, channel_out, kernel_size=3, padding=1, stride=2)) self.conv_out = zero_module(conv_nd(dims, block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)) def forward(self, conditioning): embedding = self.conv_in(conditioning) embedding = F.silu(embedding) for block in self.blocks: embedding = block(embedding) embedding = F.silu(embedding) embedding = self.conv_out(embedding) return embedding class SparseCtrl(ControlNet): def __init__(self, use_simplified_condition_embedding=True, conditioning_channels=4, **kwargs): super().__init__(hint_channels=1, **kwargs) # we don't need hint_channels, but we need to set it to 1 to avoid errors self.use_simplified_condition_embedding = use_simplified_condition_embedding if use_simplified_condition_embedding: self.input_hint_block = TimestepEmbedSequential( zero_module(conv_nd(self.dims, conditioning_channels, kwargs.get("model_channels", 320), kernel_size=3, padding=1))) else: self.input_hint_block = TimestepEmbedSequential( CondEmbed( self.dims, kwargs.get("model_channels", 320), conditioning_channels=conditioning_channels,)) def load_state_dict(self, state_dict, strict=False): mm_dict = {} cn_dict = {} for k, v in state_dict.items(): if "motion_modules" in k: mm_dict[k] = v else: cn_dict[k] = v super().load_state_dict(cn_dict, strict=True) from scripts.animatediff_mm import MotionWrapper, MotionModuleType sparsectrl_mm = MotionWrapper("", "", MotionModuleType.SparseCtrl) sparsectrl_mm.load_state_dict(mm_dict, strict=True) for mm_idx, unet_idx in enumerate([1, 2, 4, 5, 7, 8, 10, 11]): mm_idx0, mm_idx1 = mm_idx // 2, mm_idx % 2 mm_inject = getattr(sparsectrl_mm.down_blocks[mm_idx0], "motion_modules")[mm_idx1] self.input_blocks[unet_idx].append(mm_inject) @staticmethod def create_cond_mask(control_image_index: List[int], control_image_latents: torch.Tensor, video_length: int): hint_cond = torch.zeros((video_length, *control_image_latents.shape[1:]), device=control_image_latents.device, dtype=control_image_latents.dtype) hint_cond[control_image_index] = control_image_latents[:len(control_image_index)] hint_cond_mask = torch.zeros((hint_cond.shape[0], 1, *hint_cond.shape[2:]), device=control_image_latents.device, dtype=control_image_latents.dtype) hint_cond_mask[control_image_index] = 1.0 return torch.cat([hint_cond, hint_cond_mask], dim=1) def forward(self, x, hint, timesteps, context, y=None, **kwargs): return super().forward(torch.zeros_like(x, device=x.device), hint, timesteps, context, y=y, **kwargs)