Spaces:
Runtime error
Runtime error
import torchvision # Fix issue Unknown builtin op: torchvision::nms | |
import cv2 | |
import numpy as np | |
import torch | |
from einops import rearrange | |
from .densepose import DensePoseMaskedColormapResultsVisualizer, _extract_i_from_iuvarr, densepose_chart_predictor_output_to_result_with_confidences | |
from modules import devices | |
from annotator.annotator_path import models_path | |
import os | |
N_PART_LABELS = 24 | |
result_visualizer = DensePoseMaskedColormapResultsVisualizer( | |
alpha=1, | |
data_extractor=_extract_i_from_iuvarr, | |
segm_extractor=_extract_i_from_iuvarr, | |
val_scale = 255.0 / N_PART_LABELS | |
) | |
remote_torchscript_path = "https://huggingface.co/LayerNorm/DensePose-TorchScript-with-hint-image/resolve/main/densepose_r50_fpn_dl.torchscript" | |
torchscript_model = None | |
model_dir = os.path.join(models_path, "densepose") | |
def apply_densepose(input_image, cmap="viridis"): | |
global torchscript_model | |
if torchscript_model is None: | |
model_path = os.path.join(model_dir, "densepose_r50_fpn_dl.torchscript") | |
if not os.path.exists(model_path): | |
from scripts.utils import load_file_from_url | |
load_file_from_url(remote_torchscript_path, model_dir=model_dir) | |
torchscript_model = torch.jit.load(model_path, map_location="cpu").to(devices.get_device_for("controlnet")).eval() | |
H, W = input_image.shape[:2] | |
hint_image_canvas = np.zeros([H, W], dtype=np.uint8) | |
hint_image_canvas = np.tile(hint_image_canvas[:, :, np.newaxis], [1, 1, 3]) | |
input_image = rearrange(torch.from_numpy(input_image).to(devices.get_device_for("controlnet")), 'h w c -> c h w') | |
pred_boxes, corase_segm, fine_segm, u, v = torchscript_model(input_image) | |
extractor = densepose_chart_predictor_output_to_result_with_confidences | |
densepose_results = [extractor(pred_boxes[i:i+1], corase_segm[i:i+1], fine_segm[i:i+1], u[i:i+1], v[i:i+1]) for i in range(len(pred_boxes))] | |
if cmap=="viridis": | |
result_visualizer.mask_visualizer.cmap = cv2.COLORMAP_VIRIDIS | |
hint_image = result_visualizer.visualize(hint_image_canvas, densepose_results) | |
hint_image = cv2.cvtColor(hint_image, cv2.COLOR_BGR2RGB) | |
hint_image[:, :, 0][hint_image[:, :, 0] == 0] = 68 | |
hint_image[:, :, 1][hint_image[:, :, 1] == 0] = 1 | |
hint_image[:, :, 2][hint_image[:, :, 2] == 0] = 84 | |
else: | |
result_visualizer.mask_visualizer.cmap = cv2.COLORMAP_PARULA | |
hint_image = result_visualizer.visualize(hint_image_canvas, densepose_results) | |
hint_image = cv2.cvtColor(hint_image, cv2.COLOR_BGR2RGB) | |
return hint_image | |
def unload_model(): | |
global torchscript_model | |
if torchscript_model is not None: | |
torchscript_model.cpu() | |