import torchvision # Fix issue Unknown builtin op: torchvision::nms import cv2 import numpy as np import torch from einops import rearrange from .densepose import DensePoseMaskedColormapResultsVisualizer, _extract_i_from_iuvarr, densepose_chart_predictor_output_to_result_with_confidences from modules import devices from annotator.annotator_path import models_path import os N_PART_LABELS = 24 result_visualizer = DensePoseMaskedColormapResultsVisualizer( alpha=1, data_extractor=_extract_i_from_iuvarr, segm_extractor=_extract_i_from_iuvarr, val_scale = 255.0 / N_PART_LABELS ) remote_torchscript_path = "https://huggingface.co/LayerNorm/DensePose-TorchScript-with-hint-image/resolve/main/densepose_r50_fpn_dl.torchscript" torchscript_model = None model_dir = os.path.join(models_path, "densepose") def apply_densepose(input_image, cmap="viridis"): global torchscript_model if torchscript_model is None: model_path = os.path.join(model_dir, "densepose_r50_fpn_dl.torchscript") if not os.path.exists(model_path): from scripts.utils import load_file_from_url load_file_from_url(remote_torchscript_path, model_dir=model_dir) torchscript_model = torch.jit.load(model_path, map_location="cpu").to(devices.get_device_for("controlnet")).eval() H, W = input_image.shape[:2] hint_image_canvas = np.zeros([H, W], dtype=np.uint8) hint_image_canvas = np.tile(hint_image_canvas[:, :, np.newaxis], [1, 1, 3]) input_image = rearrange(torch.from_numpy(input_image).to(devices.get_device_for("controlnet")), 'h w c -> c h w') pred_boxes, corase_segm, fine_segm, u, v = torchscript_model(input_image) extractor = densepose_chart_predictor_output_to_result_with_confidences densepose_results = [extractor(pred_boxes[i:i+1], corase_segm[i:i+1], fine_segm[i:i+1], u[i:i+1], v[i:i+1]) for i in range(len(pred_boxes))] if cmap=="viridis": result_visualizer.mask_visualizer.cmap = cv2.COLORMAP_VIRIDIS hint_image = result_visualizer.visualize(hint_image_canvas, densepose_results) hint_image = cv2.cvtColor(hint_image, cv2.COLOR_BGR2RGB) hint_image[:, :, 0][hint_image[:, :, 0] == 0] = 68 hint_image[:, :, 1][hint_image[:, :, 1] == 0] = 1 hint_image[:, :, 2][hint_image[:, :, 2] == 0] = 84 else: result_visualizer.mask_visualizer.cmap = cv2.COLORMAP_PARULA hint_image = result_visualizer.visualize(hint_image_canvas, densepose_results) hint_image = cv2.cvtColor(hint_image, cv2.COLOR_BGR2RGB) return hint_image def unload_model(): global torchscript_model if torchscript_model is not None: torchscript_model.cpu()