Spaces:
Sleeping
Sleeping
File size: 2,825 Bytes
c913f06 51109f7 c913f06 6acd8b1 c913f06 0d2918d 45f7f96 0d2918d 6acd8b1 c913f06 6acd8b1 b4ada40 0d2918d b4ada40 aff53da b4ada40 bd774c8 45f7f96 b4ada40 45f7f96 b4ada40 cfa554a 8b275a0 cfa554a c913f06 0d2918d c913f06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
from cmath import pi
from json import load, tool
from os import stat
import streamlit as st
import pandas as pd
import numpy as np
import pydeck as pdk
from typing import Dict, Union
import streamlit.components.v1 as components
st.title("Live 3D Map")
location = st.checkbox('Location Filter')
queried_zip_code = None
queried_city = None
queried_state = None
queried_age = None
if location:
queried_zip_code = st.text_input('Zip Code:')
queried_city = st.text_input('City')
queried_state = st.selectbox('State:', ('AL', 'AK', 'AZ', 'AR', 'AS','CA','CO','CT','DE','DC','FL','GA','GU','HI','ID','IL',
'IN','IA','KS','KY','LA','ME','MD','MA','MI','MN','MS','MO','MT','NE','NV','NH','NJ','NM','NY','NC','ND','CM','OH',
'OK','OR','PA','PR','RI','SC','SD','TN','TX','UT','VT','VA','VI','WA','WV','WI','WY'))
ageBox = st.checkbox("Age Filter")
if ageBox:
queried_age = st.slider("Age",0,200,(0,200))
queried_male = st.checkbox("Male",value=True)
queried_female = st.checkbox("Female",value=True)
@st.cache(allow_output_mutation=True)
def gen_load() -> pd.DataFrame:
df = pd.read_csv('US.txt')
return df
import streamlit as st
import pandas as pd
import pydeck as pdk
def ShowCityDataframe(uscities, US):
df = pd.read_csv(uscities)
df2 = pd.read_csv(uscities)
df3 = pd.read_csv(uscities)
st.title("City FIPS, Location, and Population")
st.text("Search for any city in the United States:")
search_query = st.text_input(label="City Name", value="")
if search_query != "":
df = df[df["city"].str.contains(search_query, case=False)]
st.subheader("City Detail")
st.write(df)
#search_query2 = st.text_input(label="Zip Code", value="")
#if search_query2 != "":
# df2 = df2[df2["zips"].str.contains(search_query2, case=False)]
#st.subheader("Zip Code Area Detail")
#st.write(df2)
search_query3 = st.text_input(label="State", value="")
if search_query3 != "":
df3 = df3[df3["state_name"].str.contains(search_query3, case=False)]
st.subheader("State Detail")
st.write(df3)
uscities = "uscities.csv" # CSV - Columns are: "city","city_ascii","state_id","state_name","county_fips","county_name","lat","lng","population","density","source","military","incorporated","timezone","ranking","zips","id"
US = "US.txt" # TSV - Columns are: Country Zip City State Area AreaCode Latitude Longitude Include
# TSV Columns sample: US 99553 Akutan Alaska AK Aleutians East 013 54.143 -165.7854 1
uszipcodes = "us-zip-code-latitude-and-longitude.txt" # SSV - Columns are: Zip;City;State;Latitude;Longitude;Timezone;Daylight savings time flag;geopoint
# SSV Columns sample: 71937;Cove;AR;34.398483;-94.39398;-6;1;34.398483,-94.39398
ShowCityDataframe(uscities, US)
|