Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -37,95 +37,29 @@ def gen_load() -> pd.DataFrame:
|
|
37 |
|
38 |
#AI Emotional State Score: Anxiety, Confusion, Trepidation, Fear, Guilt
|
39 |
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
if (male or female) and not (male and female):
|
46 |
-
df = df.loc[df['Gender'] == ("Male" if male else ("Female" if female else ""))]
|
47 |
-
elif not (male or female):
|
48 |
-
df = df.loc[df['Gender'] == "(null)"]
|
49 |
-
except:
|
50 |
-
pass
|
51 |
-
try:
|
52 |
-
df = df[(df['Age'].gt(age[0]) & df['Age'].lt(age[1]))]
|
53 |
-
except:
|
54 |
-
pass
|
55 |
-
try:
|
56 |
-
if zip_code or state or city:
|
57 |
-
val = "Zip" if zip_code != "" else "City" if city != "" else "Abb"
|
58 |
-
df = df.loc[df[val] == (zip_code or city or state)]
|
59 |
-
except:
|
60 |
-
pass
|
61 |
-
|
62 |
-
try:
|
63 |
-
if len(selected_cohorts) > 0:
|
64 |
-
df = df.loc[df['Cohort'].isin(selected_ctss)]
|
65 |
-
|
66 |
-
except:
|
67 |
-
pass
|
68 |
-
|
69 |
-
#value_counts = df["FCName"].value_counts()
|
70 |
-
#df2 = pd.DataFrame(value_counts)
|
71 |
-
#df2 = df2.reset_index()
|
72 |
-
#df2.columns = ['FCName', 'Count']
|
73 |
-
#df = df.merge(df2, left_on = 'FCName', right_on = 'FCName',how='left')
|
74 |
-
|
75 |
-
return df
|
76 |
-
|
77 |
-
def mapF(data):
|
78 |
-
print(data)
|
79 |
-
geo = data.iloc[0]
|
80 |
-
print(geo)
|
81 |
-
#print(geo[7], geo[8])
|
82 |
-
#lat = float(geo['lat'])
|
83 |
-
#lon = float(geo['lon'])
|
84 |
-
lat = float(geo[7])
|
85 |
-
lon = float(geo[8])
|
86 |
-
max = data['Count'].max()
|
87 |
-
view_state = pdk.ViewState(
|
88 |
-
pitch = 40.5,
|
89 |
-
bearing = -27.36,
|
90 |
-
latitude = lat,
|
91 |
-
longitude = lon,
|
92 |
-
zoom = 4,
|
93 |
-
)
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
pickable=True,
|
100 |
-
extruded=True,
|
101 |
-
auto_highlight=True,
|
102 |
-
get_elevation="Count",
|
103 |
-
# cell_size=200,
|
104 |
-
radius = 1000,
|
105 |
-
elevation_scale=1000000/ max,
|
106 |
-
get_fill_color='[255, 255 - (Count/3500) * 255, 0,100]',
|
107 |
-
coverage=10
|
108 |
-
)
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
tooltip = {
|
115 |
-
"html": "<b>City,State:</b> {City} </br> <b>Services:</b> {Count} </br> <b>F:</b> {FCName}",
|
116 |
-
"style": {
|
117 |
-
"backgroundColor": "steelblue",
|
118 |
-
"color": "white"
|
119 |
-
}
|
120 |
-
},
|
121 |
-
)
|
122 |
-
# st.pydeck_chart(r)
|
123 |
-
components.html(r.to_html(as_string=True), height=600)
|
124 |
|
125 |
-
|
|
|
126 |
|
127 |
-
|
128 |
-
|
|
|
129 |
|
130 |
-
mapF(data)
|
131 |
-
|
|
|
37 |
|
38 |
#AI Emotional State Score: Anxiety, Confusion, Trepidation, Fear, Guilt
|
39 |
|
40 |
+
import streamlit as st
|
41 |
+
import pandas as pd
|
42 |
+
import pydeck as pdk
|
43 |
|
44 |
+
def ShowCityDataframe(DATA_URL, SEARCH_DATA):
|
45 |
+
df = pd.read_csv(DATA_URL)
|
46 |
+
st.title("City FIPS, Location, and Population")
|
47 |
+
st.text("Search for any city in the United States:")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
# Search query for existing data
|
50 |
+
search_query = st.text_input(label="City Name", value="")
|
51 |
+
if search_query != "":
|
52 |
+
df = df[df["city"].str.contains(search_query, case=False)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
# Search query for new data
|
55 |
+
search_query2 = st.text_input(label="Zip Code", value="")
|
56 |
+
if search_query2 != "":
|
57 |
+
df = df[df["Zip"].str.contains(search_query2)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
st.subheader("City Detail")
|
60 |
+
st.write(df)
|
61 |
|
62 |
+
Cities = "uscities.csv"
|
63 |
+
SearchData = "US.txt"
|
64 |
+
ShowCityDataframe(Cities, SearchData)
|
65 |
|
|
|
|