File size: 2,053 Bytes
c913f06
 
 
909cb80
c913f06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
909cb80
51109f7
c913f06
 
909cb80
 
6acd8b1
 
 
c913f06
6acd8b1
 
 
 
c913f06
6acd8b1
 
 
 
c913f06
6acd8b1
 
 
 
c913f06
6acd8b1
 
c913f06
6acd8b1
 
 
c913f06
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from cmath import pi
from json import load, tool
from os import stat
#from telnetlib import RCP
import streamlit as st
import pandas as pd
import numpy as np
import pydeck as pdk
from typing import Dict, Union
import streamlit.components.v1 as components
#import streamlit_shared_funcs as my

st.title("Live 3D Map")
location = st.checkbox('Location Filter')
queried_zip_code = None
queried_city = None
queried_state = None
queried_age = None
if location:
    queried_zip_code = st.text_input('Zip Code:')
    queried_city = st.text_input('City')
    queried_state = st.selectbox('State:',  ('AL', 'AK', 'AZ', 'AR', 'AS','CA','CO','CT','DE','DC','FL','GA','GU','HI','ID','IL',
    'IN','IA','KS','KY','LA','ME','MD','MA','MI','MN','MS','MO','MT','NE','NV','NH','NJ','NM','NY','NC','ND','CM','OH',
    'OK','OR','PA','PR','RI','SC','SD','TN','TX','UT','VT','VA','VI','WA','WV','WI','WY'))
ageBox = st.checkbox("Age Filter")
if ageBox:
    queried_age = st.slider("Age",0,200,(0,200))

queried_male = st.checkbox("Male",value=True)
queried_female = st.checkbox("Female",value=True)

@st.cache(allow_output_mutation=True)
def gen_load() -> pd.DataFrame:
    #df = my.get_data()
    df = pd.read_csv('US.txt')
    return df

#AI Emotional State Score: Anxiety, Confusion, Trepidation, Fear, Guilt

import streamlit as st
import pandas as pd
import pydeck as pdk

def ShowCityDataframe(DATA_URL, SEARCH_DATA):
    df = pd.read_csv(DATA_URL)
    st.title("City FIPS, Location, and Population")
    st.text("Search for any city in the United States:")

    # Search query for existing data
    search_query = st.text_input(label="City Name", value="")
    if search_query != "":
        df = df[df["city"].str.contains(search_query, case=False)]

    # Search query for new data
    search_query2 = st.text_input(label="Zip Code", value="")
    if search_query2 != "":
        df = df[df["Zip"].str.contains(search_query2)]

    st.subheader("City Detail")
    st.write(df)

Cities = "uscities.csv"
SearchData = "US.txt"
ShowCityDataframe(Cities, SearchData)