File size: 7,132 Bytes
361f15f
 
 
 
 
 
 
 
427f085
361f15f
 
 
427f085
 
 
 
 
361f15f
 
 
 
 
 
427f085
361f15f
427f085
361f15f
 
 
427f085
 
 
 
361f15f
427f085
361f15f
427f085
 
 
361f15f
 
427f085
 
 
 
 
 
 
 
361f15f
427f085
361f15f
427f085
361f15f
427f085
361f15f
 
427f085
361f15f
427f085
 
 
 
 
361f15f
427f085
 
 
 
 
 
 
 
 
 
361f15f
 
 
 
 
 
 
 
 
 
 
427f085
 
361f15f
427f085
 
 
 
 
361f15f
427f085
361f15f
 
 
 
 
 
 
 
 
 
 
 
427f085
361f15f
427f085
 
 
 
 
 
361f15f
 
 
 
 
cb6c7be
 
 
 
427f085
cb6c7be
427f085
 
 
 
 
 
 
 
 
 
 
 
 
cb6c7be
 
 
427f085
 
 
 
 
 
 
cb6c7be
 
 
 
427f085
 
cb6c7be
427f085
 
 
 
 
 
 
 
cb6c7be
427f085
 
 
cb6c7be
427f085
 
 
cb6c7be
427f085
 
 
 
 
 
 
cb6c7be
 
427f085
361f15f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import torch
import transformers
import gradio as gr
from ragatouille import RAGPretrainedModel
from huggingface_hub import InferenceClient
import re
from datetime import datetime
import json
import os
import arxiv
from utils import get_md_text_abstract, search_cleaner, get_arxiv_live_search

retrieve_results = 10 
show_examples = False
llm_models_to_choose = ['mistralai/Mixtral-8x7B-Instruct-v0.1','mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-2-2b-it', 'None']

token = os.getenv("HF_TOKEN")

generate_kwargs = dict(
    temperature = None,
    max_new_tokens = 512,
    top_p = None,
    do_sample = False,
    )

## RAG Model
RAG = RAGPretrainedModel.from_index("colbert/indexes/arxiv_colbert")

try:
  gr.Info("Setting up retriever, please wait...")
  rag_initial_output = RAG.search("what is Mistral?", k = 1)
  gr.Info("Retriever working successfully!")
    
except:
  gr.Warning("Retriever not working!")

## Header
mark_text = '# 🔍 Search Results\n'
header_text = "# ArXiv CS RAG \n"

try:
  with open("README.md", "r") as f:
      mdfile = f.read()
  date_pattern = r'Index Last Updated : \d{4}-\d{2}-\d{2}'
  match = re.search(date_pattern, mdfile)
  date = match.group().split(': ')[1]
  formatted_date = datetime.strptime(date, '%Y-%m-%d').strftime('%d %b %Y')
  header_text += f'Index Last Updated: {formatted_date}\n'
  index_info = f"Semantic Search - up to {formatted_date}"  
except:
  index_info = "Semantic Search"

database_choices = [index_info,'Arxiv Search - Latest - (EXPERIMENTAL)']

## Arxiv API
arx_client = arxiv.Client()
is_arxiv_available = True
check_arxiv_result = get_arxiv_live_search("What is Mistral?", arx_client, retrieve_results)
if len(check_arxiv_result) == 0:
  is_arxiv_available = False
  print("Arxiv search not working, switching to default search ...")
  database_choices = [index_info]



## Show examples (disabled)
if show_examples:
    with open("sample_outputs.json", "r") as f:
      sample_outputs = json.load(f)
    output_placeholder = sample_outputs['output_placeholder']
    md_text_initial = sample_outputs['search_placeholder']
    
else:
    output_placeholder = None 
    md_text_initial = ''


def rag_cleaner(inp):
    rank = inp['rank']
    title = inp['document_metadata']['title']
    content = inp['content']
    date = inp['document_metadata']['_time']
    return f"{rank}. <b> {title} </b> \n Date : {date} \n Abstract: {content}"

def get_prompt_text(question, context, formatted = True, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
    if formatted:
      sys_instruction = f"Context:\n {context} \n Given the following scientific paper abstracts, take a deep breath and lets think step by step to answer the question. Cite the titles of your sources when answering, do not cite links or dates."
      message = f"Question: {question}"
        
      if 'mistralai' in llm_model_picked:
          return f"<s>" + f"[INST] {sys_instruction}" +  f" {message}[/INST]"
          
      elif 'gemma' in llm_model_picked:
          return f"<bos><start_of_turn>user\n{sys_instruction}" +  f" {message}<end_of_turn>\n"
          
    return f"Context:\n {context} \n Given the following info, take a deep breath and lets think step by step to answer the question: {question}. Cite the titles of your sources when answering.\n\n"

def get_references(question, retriever, k = retrieve_results):
    rag_out = retriever.search(query=question, k=k)
    return rag_out

def get_rag(message):
    return get_references(message, RAG)

with gr.Blocks(theme = gr.themes.Soft()) as demo:
    header = gr.Markdown(header_text)
    
    with gr.Group():
      msg = gr.Textbox(label = 'Search', placeholder = 'What is Mistral?')
        
      with gr.Accordion("Advanced Settings", open=False):
        with gr.Row(equal_height = True):
          llm_model = gr.Dropdown(choices = llm_models_to_choose, value = 'mistralai/Mistral-7B-Instruct-v0.2', label = 'LLM Model')
          llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results as context")
          database_src = gr.Dropdown(choices = database_choices, value = index_info, label = 'Search Source')
          stream_results = gr.Checkbox(value = True, label = "Stream output", visible = False)

    output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True, placeholder = output_placeholder)
    input = gr.Textbox(show_label = False, visible = False)
    gr_md = gr.Markdown(mark_text + md_text_initial)

    def update_with_rag_md(message, llm_results_use = 5, database_choice = index_info, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
        prompt_text_from_data = ""
        database_to_use = database_choice
        if database_choice == index_info:
          rag_out = get_rag(message)
        else:
          arxiv_search_success = True
          try:
            rag_out = get_arxiv_live_search(message, arx_client, retrieve_results)
            if len(rag_out) == 0:
              arxiv_search_success = False 
          except:
            arxiv_search_success = False
 

          if not arxiv_search_success:
            gr.Warning("Arxiv Search not working, switching to semantic search ...")
            rag_out = get_rag(message)
            database_to_use = index_info 

        md_text_updated = mark_text
        for i in range(retrieve_results):
          rag_answer = rag_out[i]
          if i < llm_results_use:
            md_text_paper, prompt_text = get_md_text_abstract(rag_answer, source = database_to_use, return_prompt_formatting = True)
            prompt_text_from_data += f"{i+1}. {prompt_text}"
          else:
            md_text_paper = get_md_text_abstract(rag_answer, source = database_to_use)
          md_text_updated += md_text_paper
        prompt = get_prompt_text(message, prompt_text_from_data, llm_model_picked = llm_model_picked)
        return md_text_updated, prompt

    def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2', stream_outputs = False):
       model_disabled_text = "LLM Model is disabled"
       output = ""
        
       if llm_model_picked == 'None':
          if stream_outputs:
              for out in model_disabled_text:
                output += out
                yield output
              return output 
          else:
              return model_disabled_text
              
       client = InferenceClient(llm_model_picked, token = token)
       try:
           stream = client.text_generation(prompt, **generate_kwargs,  stream=stream_outputs, details=False, return_full_text=False)
           
       except:
           gr.Warning("LLM Inference rate limit reached, try again later!")
           return ""
       
       if stream_outputs:
           for response in stream:
              output += response
              yield output
           return output
       else:
           return stream


    msg.submit(update_with_rag_md, [msg, llm_results,  database_src, llm_model], [gr_md, input]).success(ask_llm, [input, llm_model, stream_results], output_text)

demo.queue().launch()