awacke1 commited on
Commit
cb6c7be
Β·
verified Β·
1 Parent(s): 7a16711

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +162 -106
app.py CHANGED
@@ -6,62 +6,63 @@ from huggingface_hub import InferenceClient
6
  import re
7
  from datetime import datetime
8
  import json
9
-
10
  import arxiv
11
  from utils import get_md_text_abstract, search_cleaner, get_arxiv_live_search
 
 
12
 
 
13
  retrieve_results = 20
14
  show_examples = True
15
- llm_models_to_choose = ['mistralai/Mixtral-8x7B-Instruct-v0.1','mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None']
16
 
 
17
  generate_kwargs = dict(
18
  temperature = None,
19
  max_new_tokens = 512,
20
  top_p = None,
21
  do_sample = False,
22
- )
23
 
24
- ## RAG Model
25
  RAG = RAGPretrainedModel.from_index("colbert/indexes/arxiv_colbert")
26
 
27
  try:
28
- gr.Info("Setting up retriever, please wait...")
29
- rag_initial_output = RAG.search("What is Generative AI in Healthcare?", k = 1)
30
- gr.Info("Retriever working successfully!")
31
-
32
  except:
33
- gr.Warning("Retriever not working!")
34
 
35
- ## Header
36
  mark_text = '# πŸ©ΊπŸ” Search Results\n'
37
- header_text = "## πŸ“šArxivπŸ“–PaperπŸ”Search - πŸ”πŸ•΅οΈβ€β™€οΈ Search, πŸ“πŸ—žοΈ Summarize, βž• and πŸ§©πŸ”“ Solve πŸ”¬πŸ“Š Research πŸ€”β“ Problems βœοΈπŸ“„ with πŸ“šπŸ“° Papers βž• and πŸ€–πŸ§  RAG πŸ§‘β€πŸ«πŸ¦Ύ AI βž• and β“πŸ’¬ QA πŸ› οΈπŸ”§ Techniques \n"
38
 
 
39
  try:
40
- with open("README.md", "r") as f:
41
- mdfile = f.read()
42
- date_pattern = r'Index Last Updated : \d{4}-\d{2}-\d{2}'
43
- match = re.search(date_pattern, mdfile)
44
- date = match.group().split(': ')[1]
45
- formatted_date = datetime.strptime(date, '%Y-%m-%d').strftime('%d %b %Y')
46
- header_text += f'Index Last Updated: {formatted_date}\n'
47
- index_info = f"Semantic Search - up to {formatted_date}"
48
  except:
49
- index_info = "Semantic Search"
50
 
51
- database_choices = [index_info,'Arxiv Search - Latest - (EXPERIMENTAL)']
52
 
53
- ## Arxiv API
54
  arx_client = arxiv.Client()
55
  is_arxiv_available = True
56
  check_arxiv_result = get_arxiv_live_search("What is Self Rewarding AI and how can it be used in Multi-Agent Systems?", arx_client, retrieve_results)
57
  if len(check_arxiv_result) == 0:
58
- is_arxiv_available = False
59
- print("Arxiv search not working, switching to default search ...")
60
- database_choices = [index_info]
61
-
62
 
63
-
64
- ## Show examples
65
  sample_outputs = {
66
  'output_placeholder': 'The LLM will provide an answer to your question here...',
67
  'search_placeholder': '''
@@ -80,7 +81,7 @@ sample_outputs = {
80
  output_placeholder = sample_outputs['output_placeholder']
81
  md_text_initial = sample_outputs['search_placeholder']
82
 
83
-
84
  def rag_cleaner(inp):
85
  rank = inp['rank']
86
  title = inp['document_metadata']['title']
@@ -88,19 +89,20 @@ def rag_cleaner(inp):
88
  date = inp['document_metadata']['_time']
89
  return f"{rank}. <b> {title} </b> \n Date : {date} \n Abstract: {content}"
90
 
 
91
  def get_prompt_text(question, context, formatted = True, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
92
  if formatted:
93
- sys_instruction = f"Context:\n {context} \n Given the following scientific paper abstracts, take a deep breath and lets think step by step to answer the question. Cite the titles of your sources when answering, do not cite links or dates."
94
- message = f"Question: {question}"
95
 
96
- if 'mistralai' in llm_model_picked:
97
- return f"<s>" + f"[INST] {sys_instruction}" + f" {message}[/INST]"
98
-
99
- elif 'gemma' in llm_model_picked:
100
- return f"<bos><start_of_turn>user\n{sys_instruction}" + f" {message}<end_of_turn>\n"
101
 
102
- return f"Context:\n {context} \n Given the following info, take a deep breath and lets think step by step to answer the question: {question}. Cite the titles of your sources when answering.\n\n"
103
 
 
104
  def get_references(question, retriever, k = retrieve_results):
105
  rag_out = retriever.search(query=question, k=k)
106
  return rag_out
@@ -108,6 +110,7 @@ def get_references(question, retriever, k = retrieve_results):
108
  def get_rag(message):
109
  return get_references(message, RAG)
110
 
 
111
  def SaveResponseAndRead(result):
112
  documentHTML5='''
113
  <!DOCTYPE html>
@@ -136,87 +139,140 @@ def SaveResponseAndRead(result):
136
  '''
137
  gr.HTML(documentHTML5)
138
 
 
139
 
140
- def update_with_rag_md(message, llm_results_use = 5, database_choice = index_info, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
141
- prompt_text_from_data = ""
142
- database_to_use = database_choice
143
- if database_choice == index_info:
144
- rag_out = get_rag(message)
145
- else:
146
- arxiv_search_success = True
147
- try:
148
- rag_out = get_arxiv_live_search(message, arx_client, retrieve_results)
149
- if len(rag_out) == 0:
150
- arxiv_search_success = False
151
- except:
152
- arxiv_search_success = False
153
-
154
-
155
- if not arxiv_search_success:
156
- gr.Warning("Arxiv Search not working, switching to semantic search ...")
157
- rag_out = get_rag(message)
158
- database_to_use = index_info
159
-
160
- md_text_updated = mark_text
161
- for i in range(retrieve_results):
162
- rag_answer = rag_out[i]
163
- if i < llm_results_use:
164
- md_text_paper, prompt_text = get_md_text_abstract(rag_answer, source = database_to_use, return_prompt_formatting = True)
165
- prompt_text_from_data += f"{i+1}. {prompt_text}"
166
- else:
167
- md_text_paper = get_md_text_abstract(rag_answer, source = database_to_use)
168
- md_text_updated += md_text_paper
169
- prompt = get_prompt_text(message, prompt_text_from_data, llm_model_picked = llm_model_picked)
170
- return md_text_updated, prompt
171
-
172
- def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2', stream_outputs = False):
173
- model_disabled_text = "LLM Model is disabled"
174
- output = ""
175
-
176
- if llm_model_picked == 'None':
177
- if stream_outputs:
178
- for out in model_disabled_text:
179
- output += out
180
- yield output
181
- return output
182
- else:
183
- return model_disabled_text
184
-
185
- client = InferenceClient(llm_model_picked)
186
- try:
187
- stream = client.text_generation(prompt, **generate_kwargs, stream=stream_outputs, details=False, return_full_text=False)
188
-
189
- except:
190
- gr.Warning("LLM Inference rate limit reached, try again later!")
191
- return ""
192
-
193
- if stream_outputs:
194
- for response in stream:
195
- output += response
196
- SaveResponseAndRead(response)
197
- yield output
198
- return output
199
- else:
200
- return stream
201
 
 
 
 
 
 
 
 
 
202
 
 
203
  with gr.Blocks(theme = gr.themes.Soft()) as demo:
204
  header = gr.Markdown(header_text)
205
 
206
  with gr.Group():
207
- msg = gr.Textbox(label = 'Search', placeholder = 'What is Generative AI in Healthcare?')
208
 
209
- with gr.Accordion("Advanced Settings", open=False):
210
- with gr.Row(equal_height = True):
211
- llm_model = gr.Dropdown(choices = llm_models_to_choose, value = 'mistralai/Mistral-7B-Instruct-v0.2', label = 'LLM Model')
212
- llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results as context")
213
- database_src = gr.Dropdown(choices = database_choices, value = index_info, label = 'Search Source')
214
- stream_results = gr.Checkbox(value = True, label = "Stream output", visible = False)
215
 
216
  output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True, placeholder = output_placeholder)
217
  input = gr.Textbox(show_label = False, visible = False)
218
  gr_md = gr.Markdown(mark_text + md_text_initial)
219
 
220
- msg.submit(update_with_rag_md, [msg, llm_results, database_src, llm_model], [gr_md, input]).success(ask_llm, [input, llm_model, stream_results], output_text)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221
 
 
222
  demo.queue().launch()
 
6
  import re
7
  from datetime import datetime
8
  import json
 
9
  import arxiv
10
  from utils import get_md_text_abstract, search_cleaner, get_arxiv_live_search
11
+ import os
12
+ import glob
13
 
14
+ # πŸŽ›οΈ App configuration - tweak these knobs for maximum brain power! 🧠πŸ’ͺ
15
  retrieve_results = 20
16
  show_examples = True
17
+ llm_models_to_choose = ['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None']
18
 
19
+ # 🎭 LLM acting instructions - "To be, or not to be... verbose" πŸ€”
20
  generate_kwargs = dict(
21
  temperature = None,
22
  max_new_tokens = 512,
23
  top_p = None,
24
  do_sample = False,
25
+ )
26
 
27
+ # πŸ§™β€β™‚οΈ Summoning the RAG model - "Accio knowledge!" πŸ“šβœ¨
28
  RAG = RAGPretrainedModel.from_index("colbert/indexes/arxiv_colbert")
29
 
30
  try:
31
+ gr.Info("πŸ—οΈ Setting up the knowledge retriever, please wait... πŸ•°οΈ")
32
+ rag_initial_output = RAG.search("What is Generative AI in Healthcare?", k = 1)
33
+ gr.Info("πŸŽ‰ Retriever is up and running! Time to flex those brain muscles! πŸ’ͺ🧠")
 
34
  except:
35
+ gr.Warning("😱 Oh no! The retriever took a coffee break. Try again later! β˜•")
36
 
37
+ # πŸ“œ The grand introduction - roll out the red carpet! 🎭
38
  mark_text = '# πŸ©ΊπŸ” Search Results\n'
39
+ header_text = "## πŸ“šArxivπŸ“–PaperπŸ”Search - πŸ•΅οΈβ€β™€οΈ Uncover, πŸ“ Summarize, and 🧩 Solve πŸ”¬ Research πŸ€”β“ Puzzles ✍️ with πŸ“š Papers and πŸ€– RAG AI 🧠\n"
40
 
41
+ # πŸ•°οΈ Time travel to find when our knowledge was last updated πŸš€
42
  try:
43
+ with open("README.md", "r") as f:
44
+ mdfile = f.read()
45
+ date_pattern = r'Index Last Updated : \d{4}-\d{2}-\d{2}'
46
+ match = re.search(date_pattern, mdfile)
47
+ date = match.group().split(': ')[1]
48
+ formatted_date = datetime.strptime(date, '%Y-%m-%d').strftime('%d %b %Y')
49
+ header_text += f'Index Last Updated: {formatted_date}\n'
50
+ index_info = f"Semantic Search - up to {formatted_date}"
51
  except:
52
+ index_info = "Semantic Search"
53
 
54
+ database_choices = [index_info, 'Arxiv Search - Latest - (EXPERIMENTAL)']
55
 
56
+ # πŸ¦‰ Arxiv API - the wise old owl of academic knowledge πŸ“œ
57
  arx_client = arxiv.Client()
58
  is_arxiv_available = True
59
  check_arxiv_result = get_arxiv_live_search("What is Self Rewarding AI and how can it be used in Multi-Agent Systems?", arx_client, retrieve_results)
60
  if len(check_arxiv_result) == 0:
61
+ is_arxiv_available = False
62
+ print("😴 Arxiv search is taking a nap, switching to default search ...")
63
+ database_choices = [index_info]
 
64
 
65
+ # 🎭 Show examples - a teaser trailer for your brain! 🍿🧠
 
66
  sample_outputs = {
67
  'output_placeholder': 'The LLM will provide an answer to your question here...',
68
  'search_placeholder': '''
 
81
  output_placeholder = sample_outputs['output_placeholder']
82
  md_text_initial = sample_outputs['search_placeholder']
83
 
84
+ # 🧹 Clean up the RAG output - nobody likes a messy mind! 🧼🧠
85
  def rag_cleaner(inp):
86
  rank = inp['rank']
87
  title = inp['document_metadata']['title']
 
89
  date = inp['document_metadata']['_time']
90
  return f"{rank}. <b> {title} </b> \n Date : {date} \n Abstract: {content}"
91
 
92
+ # 🎭 Craft the perfect prompt - it's showtime for the LLM! 🎬
93
  def get_prompt_text(question, context, formatted = True, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
94
  if formatted:
95
+ sys_instruction = f"Context:\n {context} \n Given the following scientific paper abstracts, take a deep breath and let's think step by step to answer the question. Cite the titles of your sources when answering, do not cite links or dates."
96
+ message = f"Question: {question}"
97
 
98
+ if 'mistralai' in llm_model_picked:
99
+ return f"<s>" + f"[INST] {sys_instruction}" + f" {message}[/INST]"
100
+ elif 'gemma' in llm_model_picked:
101
+ return f"<bos><start_of_turn>user\n{sys_instruction}" + f" {message}<end_of_turn>\n"
 
102
 
103
+ return f"Context:\n {context} \n Given the following info, take a deep breath and let's think step by step to answer the question: {question}. Cite the titles of your sources when answering.\n\n"
104
 
105
+ # πŸ•΅οΈβ€β™€οΈ Get those juicy references - time to go treasure hunting! πŸ’ŽπŸ“š
106
  def get_references(question, retriever, k = retrieve_results):
107
  rag_out = retriever.search(query=question, k=k)
108
  return rag_out
 
110
  def get_rag(message):
111
  return get_references(message, RAG)
112
 
113
+ # 🎀 Save the response and read it aloud - it's karaoke time for your brain! 🧠🎢
114
  def SaveResponseAndRead(result):
115
  documentHTML5='''
116
  <!DOCTYPE html>
 
139
  '''
140
  gr.HTML(documentHTML5)
141
 
142
+ # πŸ“ File management functions - because even AI needs a filing system! πŸ—„οΈπŸ€–
143
 
144
+ def save_response_as_markdown(question, response):
145
+ timestamp = datetime.now().strftime("%Y%m%d%H%M")
146
+ filename = f"{timestamp}_{question[:50]}.md" # Truncate question to 50 chars for filename
147
+ with open(filename, "w", encoding="utf-8") as f:
148
+ f.write(response)
149
+ return filename
150
+
151
+ def list_markdown_files():
152
+ files = glob.glob("*.md")
153
+ files.sort(key=os.path.getmtime, reverse=True)
154
+ return [f for f in files if f != "README.md"]
155
+
156
+ def delete_file(filename):
157
+ if filename != "README.md":
158
+ os.remove(filename)
159
+ return f"Deleted {filename}"
160
+ return "Cannot delete README.md"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161
 
162
+ def display_markdown_contents():
163
+ files = list_markdown_files()
164
+ output = ""
165
+ for file in files:
166
+ with open(file, "r", encoding="utf-8") as f:
167
+ content = f.read()
168
+ output += f"## {file}\n\n```markdown\n{content}\n```\n\n"
169
+ return output
170
 
171
+ # 🎨 Building the UI - it's like LEGO, but for brains! πŸ§ πŸ—οΈ
172
  with gr.Blocks(theme = gr.themes.Soft()) as demo:
173
  header = gr.Markdown(header_text)
174
 
175
  with gr.Group():
176
+ msg = gr.Textbox(label = 'Search', placeholder = 'What is Generative AI in Healthcare?')
177
 
178
+ with gr.Accordion("Advanced Settings", open=False):
179
+ with gr.Row(equal_height = True):
180
+ llm_model = gr.Dropdown(choices = llm_models_to_choose, value = 'mistralai/Mistral-7B-Instruct-v0.2', label = 'LLM Model')
181
+ llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results as context")
182
+ database_src = gr.Dropdown(choices = database_choices, value = index_info, label = 'Search Source')
183
+ stream_results = gr.Checkbox(value = True, label = "Stream output", visible = False)
184
 
185
  output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True, placeholder = output_placeholder)
186
  input = gr.Textbox(show_label = False, visible = False)
187
  gr_md = gr.Markdown(mark_text + md_text_initial)
188
 
189
+ with gr.Tab("Saved Responses"):
190
+ refresh_button = gr.Button("πŸ”„ Refresh File List")
191
+ file_list = gr.Dropdown(choices=list_markdown_files(), label="Saved Responses")
192
+ delete_button = gr.Button("πŸ—‘οΈ Delete Selected File")
193
+ markdown_display = gr.Markdown()
194
+
195
+ # πŸ”„ Update the file list - keeping things fresh! 🌿
196
+ def update_file_list():
197
+ return gr.Dropdown(choices=list_markdown_files())
198
+
199
+ refresh_button.click(update_file_list, outputs=[file_list])
200
+ delete_button.click(delete_file, inputs=[file_list], outputs=[markdown_display]).then(update_file_list, outputs=[file_list])
201
+ file_list.change(lambda x: open(x, "r", encoding="utf-8").read() if x else "", inputs=[file_list], outputs=[markdown_display])
202
+
203
+ # 🎭 The grand finale - where the magic happens! 🎩✨
204
+ def update_with_rag_md(message, llm_results_use = 5, database_choice = index_info, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
205
+ prompt_text_from_data = ""
206
+ database_to_use = database_choice
207
+ if database_choice == index_info:
208
+ rag_out = get_rag(message)
209
+ else:
210
+ arxiv_search_success = True
211
+ try:
212
+ rag_out = get_arxiv_live_search(message, arx_client, retrieve_results)
213
+ if len(rag_out) == 0:
214
+ arxiv_search_success = False
215
+ except:
216
+ arxiv_search_success = False
217
+
218
+ if not arxiv_search_success:
219
+ gr.Warning("😴 Arxiv Search is taking a siesta, switching to semantic search ...")
220
+ rag_out = get_rag(message)
221
+ database_to_use = index_info
222
+
223
+ md_text_updated = mark_text
224
+ for i in range(retrieve_results):
225
+ rag_answer = rag_out[i]
226
+ if i < llm_results_use:
227
+ md_text_paper, prompt_text = get_md_text_abstract(rag_answer, source = database_to_use, return_prompt_formatting = True)
228
+ prompt_text_from_data += f"{i+1}. {prompt_text}"
229
+ else:
230
+ md_text_paper = get_md_text_abstract(rag_answer, source = database_to_use)
231
+ md_text_updated += md_text_paper
232
+ prompt = get_prompt_text(message, prompt_text_from_data, llm_model_picked = llm_model_picked)
233
+ return md_text_updated, prompt
234
+
235
+ # 🧠 Asking the LLM - it's like a really smart magic 8-ball! 🎱✨
236
+ def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2', stream_outputs = False):
237
+ model_disabled_text = "LLM Model is taking a vacation. Try again later! πŸ–οΈ"
238
+ output = ""
239
+
240
+ if llm_model_picked == 'None':
241
+ if stream_outputs:
242
+ for out in model_disabled_text:
243
+ output += out
244
+ yield output
245
+ return output
246
+ else:
247
+ return model_disabled_text
248
+
249
+ client = InferenceClient(llm_model_picked)
250
+ try:
251
+ stream = client.text_generation(prompt, **generate_kwargs, stream=stream_outputs, details=False, return_full_text=False)
252
+
253
+ except:
254
+ gr.Warning("🚦 LLM Inference hit a traffic jam! Take a breather and try again later.")
255
+ return ""
256
+
257
+ if stream_outputs:
258
+ for response in stream:
259
+ output += response
260
+ SaveResponseAndRead(response)
261
+ yield output
262
+ return output
263
+ else:
264
+ return stream
265
+
266
+ # 🎬 Action! Process the query and save the response
267
+ def process_and_save(message, llm_results_use, database_choice, llm_model_picked):
268
+ md_text_updated, prompt = update_with_rag_md(message, llm_results_use, database_choice, llm_model_picked)
269
+ llm_response = ask_llm(prompt, llm_model_picked, stream_outputs=False)
270
+ full_response = f"Question: {message}\n\nResponse:\n{llm_response}\n\nReferences:\n{md_text_updated}"
271
+ filename = save_response_as_markdown(message, full_response)
272
+ return md_text_updated, prompt, llm_response, filename
273
+
274
+ # 🎬 Lights, camera, action! Let's get this show on the road! πŸš€
275
+ msg.submit(process_and_save, [msg, llm_results, database_src, llm_model], [gr_md, input, output_text, file_list]).then(update_file_list, outputs=[file_list])
276
 
277
+ # πŸŽ‰ Launch the app - let the knowledge party begin! 🎊🧠
278
  demo.queue().launch()