File size: 65,616 Bytes
1c20b3b
 
 
 
 
 
5dd4a72
1c20b3b
5dd4a72
1c20b3b
 
 
 
 
 
 
 
 
 
 
 
49a96d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73e1438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
---
title: 🧠🌱SynapTree🌳
emoji: 🌳🧠🌱
colorFrom: indigo
colorTo: blue
sdk: streamlit
sdk_version: 1.42.2
app_file: app.py
pinned: false
license: mit
short_description: AI Knowledge Tree Builder AI
---

AIKnowledgeTreeBuilder is designed with the following tenets: 
1. Portability - Universal access via any device & link sharing 
2. Speed of Build - Rapid deployments (< 2min to production) 
3. Linkiness - Programmatic access to major AI knowledge sources 
4. Abstractive - Core stays lean by isolating high-maintenance components 
5. Memory - Shareable flows with deep-linked research paths 
6. Personalized - Rapidly adapts knowledge base to user needs 
7. Living Brevity - Easily cloneable, self modifies with data and public to shares results.


🔧 **Systems, Infrastructure & Low-Level Engineering**

🔧 1. Low-level system integrations compilers Cplusplus
🔧 2. Linux or embedded systems experience
🔧 3. Hardware acceleration
🔧 4. Accelerating ML training inference across AI hardware
🔧 5. CUDA kernels
🔧 6. Optimum integration for specialized AI hardware
🔧 7. Cross-layer performance tuning hardware plus software
🔧 8. Data-center scale HPC or ML deployment
🔧 9. GPU accelerator architecture and CUDA kernel optimization
🔧 10. GPU kernel design and HPC concurrency
🔧 11. GPU cluster configuration and job scheduling
🔧 12. HPC provisioning and GPU cluster orchestration
🔧 13. HPC training pipeline and multi-GPU scheduling
🔧 14. HPC scheduling and multi-node debugging
🔧 15. HPC or large-batch evaluations
🔧 16. Hybrid on-premise and cloud HPC setups
🔧 17. Large-scale distributed computing and HPC performance
🔧 18. Low-level HPC code Cplusplus Triton and parallel programming
🔧 19. Low-level driver optimizations CUDA RDMA etc
🔧 20. Multi-GPU training and HPC acceleration
🔧 21. Overseeing HPC infrastructure for RL reasoning tasks
🔧 22. Performance modeling for large GPU fleets
🔧 23. Python and low-level matrix operations custom CUDA kernels
🔧 24. Python Cplusplus tooling for robust model tests
🔧 25. Stress-testing frontier LLMs and misuse detection
🔧 26. Building and optimizing distributed backend systems
🔧 27. Distributed system debugging and optimization
🔧 28. Distributed system design and MLOps best practices
🔧 29. High-performance optimization for ML training and inference
🔧 30. Implementing quantitative models of system throughput
🔧 31. Load balancing and high-availability design
🔧 32. Optimizing system performance under heavy ML loads
🔧 33. Performance optimization for LLM inference
🔧 34. Python-driven distributed training pipelines
🔧 35. Throughput and performance optimization
🔧 36. Cross-team platform innovation and proactive ML based resolution
🔧 37. Distributed systems design and scalable architectures
🔧 38. Observability anomaly detection and automated triage AIOps Python Go
🔧 39. ServiceNow expansions AIOps and AI automation
🔧 40. User-centric IT workflows and design integration

💻 **Software, Cloud, MLOps & Infrastructure**

💻 1. Python APIs and framework optimizations tokenizers datasets
💻 2. Python programming
💻 3. Rust programming
💻 4. PyTorch and Keras development
💻 5. TypeScript development
💻 6. MongoDB integration
💻 7. Kubernetes orchestration
💻 8. Building secure and robust developer experiences and APIs
💻 9. Full-stack development Nodejs Svelte AWS
💻 10. Javascript TypeScript machine learning libraries transformersjs huggingfacejs
💻 11. In-browser inference using WebGPU WASM ONNX
💻 12. Integrating with major cloud platforms AWS GCP Azure
💻 13. Containerization with Docker and MLOps pipelines
💻 14. Distributed data processing
💻 15. Building essential tooling for ML hubs
💻 16. Cloud infrastructure provisioning Terraform Helm
💻 17. Coordination of concurrency frameworks Kubernetes etc
💻 18. Data pipeline tooling Spark Airflow
💻 19. Deep learning systems performance profiling and tuning
💻 20. End-to-end MLOps and DevOps practices
💻 21. GPU-based microservices and DevOps
💻 22. Infrastructure as Code Terraform Kubernetes
💻 23. Managing GPU infrastructure at scale K8s orchestration
💻 24. Model and pipeline parallel strategies
💻 25. Python and Golang for infrastructure automation
💻 26. Python-based distributed frameworks Ray Horovod
💻 27. Reliability and performance scaling of infrastructure
💻 28. System reliability and SRE best practices
💻 29. Building observability and debugging tools for crawlers
💻 30. Building scalable data pipelines for language model training
💻 31. Cloud infrastructure optimization and integration AWS GCP
💻 32. Data quality assurance and validation systems
💻 33. Designing cloud-native architectures for AI services
💻 34. Ensuring system resilience and scalability
💻 35. High-availability and scalable system design
💻 36. Infrastructure design for large-scale ML systems
💻 37. Integration with ML frameworks
💻 38. Python and distributed computing frameworks Spark
💻 39. Python automation and container orchestration Kubernetes
💻 40. Python for automation and infrastructure monitoring
💻 41. Python scripting for deployment automation
💻 42. Scalable system architecture
💻 43. Enhancing reliability quality and time-to-market through performance optimization
💻 44. Managing production environments using Azure VSCode Datadog Qualtrics ServiceNow
💻 45. Building MLOps pipelines for containerizing models with Docker TypeScript Rust MongoDB Svelte TailwindCSS Kubernetes

🤖 **Machine Learning, AI & Model Development**

🤖 1. Performance tuning for Transformers in NLP CV and Speech
🤖 2. Industrial-level ML for text generation inference
🤖 3. Optimizing and scaling real-world ML services
🤖 4. Reliability and performance monitoring for ML systems
🤖 5. Ablation and training small models for data-quality analysis
🤖 6. Reducing model size and complexity via quantization
🤖 7. Neural sparse models and semantic dense retrieval SPLADE BM25
🤖 8. LLM usage and fine-tuning with chain-of-thought prompting
🤖 9. Energy efficiency and carbon footprint analysis in ML
🤖 10. Post-training methods for LLMs RLHF PPO DPO instruction tuning
🤖 11. Building LLM agents with external tool usage
🤖 12. Creating LLM agents that control GUIs via screen recordings
🤖 13. Building web-scale high-quality LLM training datasets
🤖 14. LLM-based code suggestions in Gradio Playground
🤖 15. Speech-to-text text-to-speech and speaker diarization
🤖 16. Abuse detection and ML-based risk scoring
🤖 17. AI safety and alignment methodologies RLHF reward models
🤖 18. Building ML-driven products using Python and PyTorch
🤖 19. Building massive training sets for LLMs
🤖 20. Developing next-generation AI capabilities
🤖 21. Collaborative research on AI risk and safety
🤖 22. Distributed training frameworks for large models
🤖 23. Experimental large-model prototypes
🤖 24. Exploratory ML research with LLMs and RL
🤖 25. Large-scale retrieval optimization RAG etc
🤖 26. Managing large ML architectures using Transformers
🤖 27. NLP pipelines using PyTorch and Transformers
🤖 28. Python-based data pipelines for query handling
🤖 29. Python-based LLM experimentation
🤖 30. Transformer-based LLM development and fine-tuning
🤖 31. Transformer modeling and novel architecture prototyping GPTlike
🤖 32. Vector databases and semantic search FAISS etc
🤖 33. Advanced distributed training techniques
🤖 34. Coordinating experimental design using Python
🤖 35. Designing experiments to probe LLM inner workings
🤖 36. Empirical AI research and reinforcement learning experiments
🤖 37. Leveraging Python for ML experiment pipelines
🤖 38. Reverse-engineering neural network mechanisms
🤖 39. Strategic roadmap for safe LLM development
🤖 40. Transformer-based LLM interpretability and fine-tuning
🤖 41. AI DL model productization using established frameworks
🤖 42. Utilizing AI frameworks PyTorch JAX TensorFlow TorchDynamo
🤖 43. Building AI inference APIs and MLOps solutions with Python
🤖 44. Developing agentic AI RAG and generative AI solutions LangChain AutoGen
🤖 45. End-to-end AI lifecycle management and distributed team leadership
🤖 46. Full-stack AI shipping with parallel and distributed training
🤖 47. GPU kernel integration with CUDA TensorRT and roadmap alignment
🤖 48. Large-language model inference and microservices design
🤖 49. LLM-based enterprise analytics systems
🤖 50. LLM diffusion-based product development
🤖 51. LLM alignment and RLHF pipelines for model safety
🤖 52. Mixed-precision and HPC algorithm development
🤖 53. Optimizing open-source DL frameworks PyTorch TensorFlow
🤖 54. Parallel and distributed training architectures and reinforcement learning methods PPO SAC QLearning
🤖 55. Python development for large-scale MLOps deployment
🤖 56. Scaling AI inference on hundreds of GPUs
🤖 57. System design for multi-agent AI workflows
🤖 58. Developing generative AI solutions with Python Streamlit Gradio and Torch
🤖 59. Developing Web AI solutions with Javascript TypeScript and HuggingFacejs
🤖 60. Creating WebML applications for on-device model inference
🤖 61. Building JSTS libraries for in-browser inference using ONNX and quantization with WebGPU WebNN and WASM
🤖 62. Driving forward quantization in the open-source ecosystem Accelerate PEFT Diffusers Bitsandbytes AWQ AutoGPTQ
🤖 63. Designing modern search solutions combining semantic and lexical search dense bi-encoder models SPLADE BM25
🤖 64. Training neural sparse models with Sentence Transformers integration
🤖 65. Leveraging chain-of-thought techniques in small models to outperform larger models
🤖 66. Addressing hardware acceleration and numerical precision challenges for scalable software

📊 **Data Engineering, Analytics & Data Governance**

📊 1. Advanced analytics and forecasting using Python R
📊 2. Alerting systems and dashboards Grafana etc
📊 3. Collaboration with data science teams
📊 4. Data modeling and warehousing
📊 5. Data storytelling and stakeholder communications
📊 6. Data warehousing and BI tools Looker etc
📊 7. Distributed compute frameworks Spark Flink
📊 8. ETL pipelines using Airflow and Spark
📊 9. Experiment design and user behavior modeling
📊 10. Handling large event data Kafka S3
📊 11. Managing data lakes and warehousing
📊 12. Python and SQL based data pipelines for finance
📊 13. Real-time anomaly detection using Python and streaming
📊 14. Root-cause analysis and incident response
📊 15. SQL and Python workflows for data visualization
📊 16. Product analytics and funnel insights
📊 17. Complex data pipelines and HPC optimization techniques
📊 18. Large-scale data ingestion transformation and curation
📊 19. Multi-modal data processing for diverse inputs

🔒 **Security, Compliance & Reliability**

🔒 1. Attack simulations and detection pipelines
🔒 2. Automation with Python and Bash
🔒 3. Cross-team incident response orchestration
🔒 4. IAM solutions AzureAD Okta
🔒 5. MacOS and iOS endpoint security frameworks
🔒 6. ML system vulnerability management
🔒 7. Risk assessment and vulnerability management
🔒 8. Security audits and penetration testing
🔒 9. Security best practices for AI products appsec devsecops
🔒 10. Secure architecture for HPC and ML pipelines
🔒 11. Security privacy and compliance in data management
🔒 12. Coordinating with security and compliance teams
🔒 13. Designing fault-tolerant high-availability LLM serving systems
🔒 14. Designing resilient and scalable architectures
🔒 15. Ensuring compliance and secure transactions
🔒 16. Familiarity with technical operations tools for security
🔒 17. Managing security processes for AI systems
🔒 18. Performance tuning for LLM serving systems
🔒 19. Process optimization and rapid troubleshooting for security
🔒 20. Python for reliability monitoring and automation
🔒 21. Python-based monitoring and fault-tolerance solutions
🔒 22. Risk management and compliance strategies
🔒 23. Cost optimization and reliability in cloud environments
🔒 24. Data quality standards and compliance Informatica Collibra Alation
🔒 25. Enterprise-wide data governance and policies for security
🔒 26. Hybrid cloud integration for secure operations
🔒 27. Identity management MFA ActiveDirectory AzureAD SSO ZeroTrust
🔒 28. Scalable database security MySQL PostgreSQL MongoDB Oracle
🔒 29. Security and operational excellence in IT and cloud

👥 **Leadership, Management & Collaboration**

👥 1. Coordinating engineering design and research teams
👥 2. Cross-functional leadership for platform roadmaps
👥 3. Cross-functional leadership across finance and engineering
👥 4. Cross-team collaboration and project leadership
👥 5. Data-driven product management AB testing and analytics
👥 6. Deep knowledge of AI frameworks and constraints
👥 7. Driving cross-team alignment on HPC resources
👥 8. People and team management for data teams
👥 9. Stakeholder management and vendor oversight
👥 10. Team-building and product strategy
👥 11. Team leadership and project delivery
👥 12. Balancing innovative research with product delivery
👥 13. Balancing rapid product delivery with AI safety standards
👥 14. Bridging customer requirements with technical development
👥 15. Collaboration across diverse technology teams
👥 16. Coordinating reinforcement learning experiments
👥 17. Coordinating with security and compliance teams
👥 18. Cross-functional agile collaboration for ML scalability
👥 19. Cross-functional team coaching and agile processes
👥 20. Cross-functional stakeholder management
👥 21. Cross-regional team alignment
👥 22. Cross-team collaboration for ML deployment
👥 23. Data-driven growth strategies for AI products
👥 24. Data-driven strategy implementation
👥 25. Detailed project planning and stakeholder coordination
👥 26. Driving execution of global market entry strategies
👥 27. Leading high-impact zero-to-one ML development teams
👥 28. Leading interdisciplinary ML research initiatives
👥 29. Leading teams building reinforcement learning systems
👥 30. Leading teams in ML interpretability research
👥 31. Overseeing Python-driven ML infrastructure
👥 32. Vendor and cross-team coordination
👥 33. Facilitating cross-disciplinary innovation

📱 **Full-Stack, UI, Mobile & Product Development**

📱 1. Building internal AI automation tools
📱 2. CI CD automation and testing frameworks
📱 3. Cloud-based microservices and REST GraphQL APIs
📱 4. GraphQL or REST based data fetching
📱 5. Integrating AI chat features in mobile applications
📱 6. LLM integration for user support flows
📱 7. MacOS iOS fleet management and security
📱 8. MDM solutions and iOS provisioning
📱 9. Native Android development Kotlin Java
📱 10. Observability and robust logging tracing
📱 11. Performance tuning and enhancing user experience for mobile
📱 12. Python Node backend development for AI features
📱 13. Rapid prototyping of AI based internal apps
📱 14. React Nextjs with Python for web services
📱 15. React TypeScript front-end development
📱 16. Integrating with GPT and other LLM endpoints
📱 17. TypeScript React and Python backend development
📱 18. Zero-touch deployment and patching
📱 19. Active engagement with open-source communities
📱 20. API design for scalable LLM interactions
📱 21. Bridging native mobile frontends with Python backends
📱 22. Bridging Python based ML models with frontend tooling
📱 23. Building internal tools to boost productivity in ML teams
📱 24. Building intuitive UIs integrated with Python backed ML
📱 25. Building robust developer infrastructure for ML products
📱 26. Crafting user-centric designs for AI interfaces
📱 27. Developer tools for prompt engineering and model testing
📱 28. End-to-end product delivery in software development
📱 29. Enhancing secure workflows and enterprise integrations
📱 30. Experimentation and iterative product development
📱 31. Full-stack development for ML driven products
📱 32. Integrating robust UIs with backend ML models
📱 33. Iterative design based on user feedback
📱 34. Mobile app development incorporating AI features
📱 35. Optimizing TypeScript Node build systems
📱 36. Python based API and data pipeline creation
📱 37. Senior engineering for practical AI and ML solutions
📱 38. Creating Python and Javascript HTML libraries for ML use cases
📱 39. Developing specialized software for healthcare ML use cases
📱 40. Utilizing library frameworks for scalable healthcare solutions
📱 41. Writing apps using Python Rust CUDA Transformers Keras
📱 42. Building AI solutions for healthcare with open-source libraries and Azure SaaS
📱 43. Designing and developing secure robust apps and APIs using Streamlit and Gradio
📱 44. Expertise with tools like Transformers Diffusers Accelerate PEFT Datasets
📱 45. Leveraging deep learning frameworks PyTorch XLA and cloud platforms

🎯 **Specialized Domains & Emerging Technologies**

🎯 1. 3D computer vision and neural rendering radiance fields
🎯 2. Advanced 3D reconstruction techniques Gaussian splatting NERF
🎯 3. Graphics engines and deep learning for graphics Unreal Unity
🎯 4. Low-level rendering pipelines DirectX Vulkan DX12
🎯 5. Performance optimized computer vision algorithms real-time tracking relighting
🎯 6. Semantic video search and 3D reconstruction services
🎯 7. Agent frameworks and LLM pipelines LangChain AutoGen
🎯 8. Concurrency in Cplusplus Python and vector database integration
🎯 9. Cross-layer performance analysis and debugging techniques
🎯 10. EDA and transistor-level performance modeling SPICE BSIM STA
🎯 11. GPU and SoC modeling and SoC architecture SystemC TLM
🎯 12. Next-generation hardware bringup and system simulation
🎯 13. Parallel computing fundamentals and performance simulation
🎯 14. Advanced development for programmable networks SDN SONiC P4
🎯 15. System design for multi-agent AI workflows
🎯 16. Advanced AI for self-driving software
🎯 17. Autonomous vehicle data pipelines and debugging
🎯 18. Car fleet software updates OTA and telemetry management
🎯 19. Large-scale multi-sensor data operations and calibration
🎯 20. Path planning and decision-making in robotics
🎯 21. Real-time embedded systems for robotics Cplusplus Python
🎯 22. Sensor fusion and HPC integration for perception systems
🎯 23. Domain randomization and sim-to-real transfer for reinforcement learning
🎯 24. GPU accelerated physics simulation Isaac Sim
🎯 25. Large-scale reinforcement learning methods PPO SAC QLearning
🎯 26. Policy optimization for robotics at scale
🎯 27. Reinforcement learning orchestration and simulation based training
🎯 28. Communication libraries NCCL NVSHMEM UCX
🎯 29. HPC networking InfiniBand RoCE and distributed GPU programming
🎯 30. GPU verification architecture techniques TLM SystemC modeling
🎯 31. Hardware prototyping and verification SDN SONiC P4 programmable hardware
🎯 32. GPU communications libraries management and performance tuning
🎯 33. Senior software architecture for data centers EthernetIP design switch OS
🎯 34. Developing Web AI solutions using Python Streamlit Gradio and Torch
🎯 35. Developing Web AI solutions with Javascript TypeScript and HuggingFacejs
🎯 36. Creating WebML applications for on-device model inference
🎯 37. Building JSTS libraries for in-browser inference using ONNX and quantization with WebGPU WebNN and WASM
🎯 38. Driving forward quantization in the open-source ecosystem Accelerate PEFT Diffusers Bitsandbytes AWQ AutoGPTQ
🎯 39. Designing modern search solutions combining semantic and lexical search dense bi-encoder models SPLADE BM25
🎯 40. Training neural sparse models with Sentence Transformers integration
🎯 41. Leveraging chain-of-thought techniques in small models to outperform larger models
🎯 42. Addressing hardware acceleration and numerical precision challenges for scalable software

📢 **Community, Open-Source & Communication**

📢 1. Educating the ML community on accelerating training and inference workloads
📢 2. Working through strategic collaborations
📢 3. Contributing documentation and code examples for technical and business audiences
📢 4. Building and evangelizing demos and strategic partner conversations
📢 5. Sharing fast Python AI development code samples and demos
📢 6. Communicating effectively in public speaking and technical education
📢 7. Engaging on social platforms GitHub LinkedIn Twitter Reddit
📢 8. Bringing fresh informed ideas while collaborating in a decentralized manner
📢 9. Writing technical documentation examples and notebooks to demonstrate new features
📢 10. Writing clear documentation across the product lifecycle
📢 11. Contributing to open-source libraries Transformers Datasets Accelerate
📢 12. Communicating via GitHub forums or Slack
📢 13. Demonstrating creativity to make complex technology accessible




-----




Lets create a gradio demo app that spins up 9 ML agents to help with the aspects of ML Development .  1st my agent code should follow and demo all the agent features in transformers, yet keep the UI witty emoji filled with humor and use either gradio or streamlit and have app.py plus requirements.txt.  Any documentation say a markdown outline on the functions and help or docs would be in README.md file so three files always with those.  2nd I will have a knowledge tree program which already has a MoE.  Can you please add the transformers agents code to it?   Transformers AGents Docs: Agents
We provide two types of agents, based on the main Agent class:

CodeAgent acts in one shot, generating code to solve the task, then executes it at once.
ReactAgent acts step by step, each step consisting of one thought, then one tool call and execution. It has two classes:
ReactJsonAgent writes its tool calls in JSON.
ReactCodeAgent writes its tool calls in Python code.
Agent
class transformers.Agent
<
source
>
( tools: typing.Union[typing.List[transformers.agents.tools.Tool], transformers.agents.agents.Toolbox]llm_engine: typing.Callable = Nonesystem_prompt: typing.Optional[str] = Nonetool_description_template: typing.Optional[str] = Noneadditional_args: typing.Dict = {}max_iterations: int = 6tool_parser: typing.Optional[typing.Callable] = Noneadd_base_tools: bool = Falseverbose: int = 0grammar: typing.Optional[typing.Dict[str, str]] = Nonemanaged_agents: typing.Optional[typing.List] = Nonestep_callbacks: typing.Optional[typing.List[typing.Callable]] = Nonemonitor_metrics: bool = True )

execute_tool_call
<
source
>
( tool_name: strarguments: typing.Dict[str, str] )

Parameters

tool_name (str) — Name of the Tool to execute (should be one from self.toolbox).
arguments (Dict[str, str]) — Arguments passed to the Tool.
Execute tool with the provided input and returns the result. This method replaces arguments with the actual values from the state if they refer to state variables.

extract_action
<
source
>
( llm_output: strsplit_token: str )

Parameters

llm_output (str) — Output of the LLM
split_token (str) — Separator for the action. Should match the example in the system prompt.
Parse action from the LLM output

run
<
source
>
( **kwargs )

To be implemented in the child class

write_inner_memory_from_logs
<
source
>
( summary_mode: typing.Optional[bool] = False )

Reads past llm_outputs, actions, and observations or errors from the logs into a series of messages that can be used as input to the LLM.

CodeAgent
class transformers.CodeAgent
<
source
>
( tools: typing.List[transformers.agents.tools.Tool]llm_engine: typing.Optional[typing.Callable] = Nonesystem_prompt: typing.Optional[str] = Nonetool_description_template: typing.Optional[str] = Nonegrammar: typing.Optional[typing.Dict[str, str]] = Noneadditional_authorized_imports: typing.Optional[typing.List[str]] = None**kwargs )

A class for an agent that solves the given task using a single block of code. It plans all its actions, then executes all in one shot.

parse_code_blob
<
source
>
( result: str )

Override this method if you want to change the way the code is cleaned in the run method.

run
<
source
>
( task: strreturn_generated_code: bool = False**kwargs )

Parameters

task (str) — The task to perform
return_generated_code (bool, optional, defaults to False) — Whether to return the generated code instead of running it
kwargs (additional keyword arguments, optional) — Any keyword argument to send to the agent when evaluating the code.
Runs the agent for the given task.

Example:

Copied
from transformers.agents import CodeAgent

agent = CodeAgent(tools=[])
agent.run("What is the result of 2 power 3.7384?")
React agents
class transformers.ReactAgent
<
source
>
( tools: typing.List[transformers.agents.tools.Tool]llm_engine: typing.Optional[typing.Callable] = Nonesystem_prompt: typing.Optional[str] = Nonetool_description_template: typing.Optional[str] = Nonegrammar: typing.Optional[typing.Dict[str, str]] = Noneplan_type: typing.Optional[str] = Noneplanning_interval: typing.Optional[int] = None**kwargs )

This agent that solves the given task step by step, using the ReAct framework: While the objective is not reached, the agent will perform a cycle of thinking and acting. The action will be parsed from the LLM output: it consists in calls to tools from the toolbox, with arguments chosen by the LLM engine.

direct_run
<
source
>
( task: str )

Runs the agent in direct mode, returning outputs only at the end: should be launched only in the run method.

planning_step
<
source
>
( taskis_first_step: bool = Falseiteration: int = None )

Parameters

task (str) — The task to perform
is_first_step (bool) — If this step is not the first one, the plan should be an update over a previous plan.
iteration (int) — The number of the current step, used as an indication for the LLM.
Used periodically by the agent to plan the next steps to reach the objective.

provide_final_answer
<
source
>
( task )

This method provides a final answer to the task, based on the logs of the agent’s interactions.

run
<
source
>
( task: strstream: bool = Falsereset: bool = True**kwargs )

Parameters

task (str) — The task to perform
Runs the agent for the given task.

Example:

Copied
from transformers.agents import ReactCodeAgent
agent = ReactCodeAgent(tools=[])
agent.run("What is the result of 2 power 3.7384?")
stream_run
<
source
>
( task: str )

Runs the agent in streaming mode, yielding steps as they are executed: should be launched only in the run method.

class transformers.ReactJsonAgent
<
source
>
( tools: typing.List[transformers.agents.tools.Tool]llm_engine: typing.Optional[typing.Callable] = Nonesystem_prompt: typing.Optional[str] = Nonetool_description_template: typing.Optional[str] = Nonegrammar: typing.Optional[typing.Dict[str, str]] = Noneplanning_interval: typing.Optional[int] = None**kwargs )

This agent that solves the given task step by step, using the ReAct framework: While the objective is not reached, the agent will perform a cycle of thinking and acting. The tool calls will be formulated by the LLM in JSON format, then parsed and executed.

step
<
source
>
( log_entry: typing.Dict[str, typing.Any] )

Perform one step in the ReAct framework: the agent thinks, acts, and observes the result. The errors are raised here, they are caught and logged in the run() method.

class transformers.ReactCodeAgent
<
source
>
( tools: typing.List[transformers.agents.tools.Tool]llm_engine: typing.Optional[typing.Callable] = Nonesystem_prompt: typing.Optional[str] = Nonetool_description_template: typing.Optional[str] = Nonegrammar: typing.Optional[typing.Dict[str, str]] = Noneadditional_authorized_imports: typing.Optional[typing.List[str]] = Noneplanning_interval: typing.Optional[int] = None**kwargs )

This agent that solves the given task step by step, using the ReAct framework: While the objective is not reached, the agent will perform a cycle of thinking and acting. The tool calls will be formulated by the LLM in code format, then parsed and executed.

step
<
source
>
( log_entry: typing.Dict[str, typing.Any] )

Perform one step in the ReAct framework: the agent thinks, acts, and observes the result. The errors are raised here, they are caught and logged in the run() method.

ManagedAgent
class transformers.ManagedAgent
<
source
>
( agentnamedescriptionadditional_prompting = Noneprovide_run_summary = False )

Tools
load_tool
transformers.load_tool
<
source
>
( task_or_repo_idmodel_repo_id = Nonetoken = None**kwargs )

Parameters

task_or_repo_id (str) — The task for which to load the tool or a repo ID of a tool on the Hub. Tasks implemented in Transformers are:
"document_question_answering"
"image_question_answering"
"speech_to_text"
"text_to_speech"
"translation"
model_repo_id (str, optional) — Use this argument to use a different model than the default one for the tool you selected.
token (str, optional) — The token to identify you on hf.co. If unset, will use the token generated when running huggingface-cli login (stored in ~/.huggingface).
kwargs (additional keyword arguments, optional) — Additional keyword arguments that will be split in two: all arguments relevant to the Hub (such as cache_dir, revision, subfolder) will be used when downloading the files for your tool, and the others will be passed along to its init.
Main function to quickly load a tool, be it on the Hub or in the Transformers library.

Loading a tool means that you’ll download the tool and execute it locally. ALWAYS inspect the tool you’re downloading before loading it within your runtime, as you would do when installing a package using pip/npm/apt.

tool
transformers.tool
<
source
>
( tool_function: typing.Callable )

Parameters

tool_function — Your function. Should have type hints for each input and a type hint for the output.
Should also have a docstring description including an ‘Args —’ part where each argument is described.
Converts a function into an instance of a Tool subclass.

Tool
class transformers.Tool
<
source
>
( *args**kwargs )

A base class for the functions used by the agent. Subclass this and implement the __call__ method as well as the following class attributes:

description (str) — A short description of what your tool does, the inputs it expects and the output(s) it will return. For instance ‘This is a tool that downloads a file from a url. It takes the url as input, and returns the text contained in the file’.
name (str) — A performative name that will be used for your tool in the prompt to the agent. For instance "text-classifier" or "image_generator".
inputs (Dict[str, Dict[str, Union[str, type]]]) — The dict of modalities expected for the inputs. It has one typekey and a descriptionkey. This is used by launch_gradio_demo or to make a nice space from your tool, and also can be used in the generated description for your tool.
output_type (type) — The type of the tool output. This is used by launch_gradio_demo or to make a nice space from your tool, and also can be used in the generated description for your tool.
You can also override the method setup() if your tool as an expensive operation to perform before being usable (such as loading a model). setup() will be called the first time you use your tool, but not at instantiation.

from_gradio
<
source
>
( gradio_tool )

Creates a Tool from a gradio tool.

from_hub
<
source
>
( repo_id: strtoken: typing.Optional[str] = None**kwargs )

Parameters

repo_id (str) — The name of the repo on the Hub where your tool is defined.
token (str, optional) — The token to identify you on hf.co. If unset, will use the token generated when running huggingface-cli login (stored in ~/.huggingface).
kwargs (additional keyword arguments, optional) — Additional keyword arguments that will be split in two: all arguments relevant to the Hub (such as cache_dir, revision, subfolder) will be used when downloading the files for your tool, and the others will be passed along to its init.
Loads a tool defined on the Hub.

Loading a tool from the Hub means that you’ll download the tool and execute it locally. ALWAYS inspect the tool you’re downloading before loading it within your runtime, as you would do when installing a package using pip/npm/apt.

from_langchain
<
source
>
( langchain_tool )

Creates a Tool from a langchain tool.

from_space
<
source
>
( space_id: strname: strdescription: strapi_name: typing.Optional[str] = Nonetoken: typing.Optional[str] = None ) → Tool

Parameters

space_id (str) — The id of the Space on the Hub.
name (str) — The name of the tool.
description (str) — The description of the tool.
api_name (str, optional) — The specific api_name to use, if the space has several tabs. If not precised, will default to the first available api.
token (str, optional) — Add your token to access private spaces or increase your GPU quotas.
Returns

Tool

The Space, as a tool.


Creates a Tool from a Space given its id on the Hub.

Examples:

Copied
image_generator = Tool.from_space(
    space_id="black-forest-labs/FLUX.1-schnell",
    name="image-generator",
    description="Generate an image from a prompt"
)
image = image_generator("Generate an image of a cool surfer in Tahiti")
Copied
face_swapper = Tool.from_space(
    "tuan2308/face-swap",
    "face_swapper",
    "Tool that puts the face shown on the first image on the second image. You can give it paths to images.",
)
image = face_swapper('./aymeric.jpeg', './ruth.jpg')
push_to_hub
<
source
>
( repo_id: strcommit_message: str = 'Upload tool'private: typing.Optional[bool] = Nonetoken: typing.Union[bool, str, NoneType] = Nonecreate_pr: bool = False )

Parameters

repo_id (str) — The name of the repository you want to push your tool to. It should contain your organization name when pushing to a given organization.
commit_message (str, optional, defaults to "Upload tool") — Message to commit while pushing.
private (bool, optional) — Whether to make the repo private. If None (default), the repo will be public unless the organization’s default is private. This value is ignored if the repo already exists.
token (bool or str, optional) — The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated when running huggingface-cli login (stored in ~/.huggingface).
create_pr (bool, optional, defaults to False) — Whether or not to create a PR with the uploaded files or directly commit.
Upload the tool to the Hub.

For this method to work properly, your tool must have been defined in a separate module (not __main__).

For instance:

Copied
from my_tool_module import MyTool
my_tool = MyTool()
my_tool.push_to_hub("my-username/my-space")
save
<
source
>
( output_dir )

Parameters

output_dir (str) — The folder in which you want to save your tool.
Saves the relevant code files for your tool so it can be pushed to the Hub. This will copy the code of your tool in output_dir as well as autogenerate:

a config file named tool_config.json
an app.py file so that your tool can be converted to a space
a requirements.txt containing the names of the module used by your tool (as detected when inspecting its code)
You should only use this method to save tools that are defined in a separate module (not __main__).

setup
<
source
>
( )

Overwrite this method here for any operation that is expensive and needs to be executed before you start using your tool. Such as loading a big model.

Toolbox
class transformers.Toolbox
<
source
>
( tools: typing.List[transformers.agents.tools.Tool]add_base_tools: bool = False )

Parameters

tools (List[Tool]) — The list of tools to instantiate the toolbox with
add_base_tools (bool, defaults to False, optional, defaults to False) — Whether to add the tools available within transformers to the toolbox.
The toolbox contains all tools that the agent can perform operations with, as well as a few methods to manage them.

add_tool
<
source
>
( tool: Tool )

Parameters

tool (Tool) — The tool to add to the toolbox.
Adds a tool to the toolbox

clear_toolbox
<
source
>
( )

Clears the toolbox

remove_tool
<
source
>
( tool_name: str )

Parameters

tool_name (str) — The tool to remove from the toolbox.
Removes a tool from the toolbox

show_tool_descriptions
<
source
>
( tool_description_template: str = None )

Parameters

tool_description_template (str, optional) — The template to use to describe the tools. If not provided, the default template will be used.
Returns the description of all tools in the toolbox

update_tool
<
source
>
( tool: Tool )

Parameters

tool (Tool) — The tool to update to the toolbox.
Updates a tool in the toolbox according to its name.

PipelineTool
class transformers.PipelineTool
<
source
>
( model = Nonepre_processor = Nonepost_processor = Nonedevice = Nonedevice_map = Nonemodel_kwargs = Nonetoken = None**hub_kwargs )

Parameters

model (str or PreTrainedModel, optional) — The name of the checkpoint to use for the model, or the instantiated model. If unset, will default to the value of the class attribute default_checkpoint.
pre_processor (str or Any, optional) — The name of the checkpoint to use for the pre-processor, or the instantiated pre-processor (can be a tokenizer, an image processor, a feature extractor or a processor). Will default to the value of model if unset.
post_processor (str or Any, optional) — The name of the checkpoint to use for the post-processor, or the instantiated pre-processor (can be a tokenizer, an image processor, a feature extractor or a processor). Will default to the pre_processor if unset.
device (int, str or torch.device, optional) — The device on which to execute the model. Will default to any accelerator available (GPU, MPS etc…), the CPU otherwise.
device_map (str or dict, optional) — If passed along, will be used to instantiate the model.
model_kwargs (dict, optional) — Any keyword argument to send to the model instantiation.
token (str, optional) — The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated when running huggingface-cli login (stored in ~/.huggingface).
hub_kwargs (additional keyword arguments, optional) — Any additional keyword argument to send to the methods that will load the data from the Hub.
A Tool tailored towards Transformer models. On top of the class attributes of the base class Tool, you will need to specify:

model_class (type) — The class to use to load the model in this tool.
default_checkpoint (str) — The default checkpoint that should be used when the user doesn’t specify one.
pre_processor_class (type, optional, defaults to AutoProcessor) — The class to use to load the pre-processor
post_processor_class (type, optional, defaults to AutoProcessor) — The class to use to load the post-processor (when different from the pre-processor).
decode
<
source
>
( outputs )

Uses the post_processor to decode the model output.

encode
<
source
>
( raw_inputs )

Uses the pre_processor to prepare the inputs for the model.

forward
<
source
>
( inputs )

Sends the inputs through the model.

setup
<
source
>
( )

Instantiates the pre_processor, model and post_processor if necessary.

launch_gradio_demo
transformers.launch_gradio_demo
<
source
>
( tool_class: Tool )

Parameters

tool_class (type) — The class of the tool for which to launch the demo.
Launches a gradio demo for a tool. The corresponding tool class needs to properly implement the class attributes inputs and output_type.

stream_to_gradio
transformers.stream_to_gradio
<
source
>
( agenttask: strtest_mode: bool = False**kwargs )

Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages.

ToolCollection
class transformers.ToolCollection
<
source
>
( collection_slug: strtoken: typing.Optional[str] = None )

Parameters

collection_slug (str) — The collection slug referencing the collection.
token (str, optional) — The authentication token if the collection is private.
Tool collections enable loading all Spaces from a collection in order to be added to the agent’s toolbox.

[!NOTE] Only Spaces will be fetched, so you can feel free to add models and datasets to your collection if you’d like for this collection to showcase them.

Example:

Copied
from transformers import ToolCollection, ReactCodeAgent

image_tool_collection = ToolCollection(collection_slug="huggingface-tools/diffusion-tools-6630bb19a942c2306a2cdb6f")
agent = ReactCodeAgent(tools=[*image_tool_collection.tools], add_base_tools=True)

agent.run("Please draw me a picture of rivers and lakes.")
Engines
You’re free to create and use your own engines to be usable by the Agents framework. These engines have the following specification:

Follow the messages format for its input (List[Dict[str, str]]) and return a string.
Stop generating outputs before the sequences passed in the argument stop_sequences
TransformersEngine
For convenience, we have added a TransformersEngine that implements the points above, taking a pre-initialized Pipeline as input.

Copied
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, TransformersEngine

model_name = "HuggingFaceTB/SmolLM-135M-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)

engine = TransformersEngine(pipe)
engine([{"role": "user", "content": "Ok!"}], stop_sequences=["great"])

"What a "
class transformers.TransformersEngine
<
source
>
( pipeline: Pipelinemodel_id: typing.Optional[str] = None )

This engine uses a pre-initialized local text-generation pipeline.

HfApiEngine
The HfApiEngine is an engine that wraps an HF Inference API client for the execution of the LLM.

Copied
from transformers import HfApiEngine

messages = [
  {"role": "user", "content": "Hello, how are you?"},
  {"role": "assistant", "content": "I'm doing great. How can I help you today?"},
  {"role": "user", "content": "No need to help, take it easy."},
]

HfApiEngine()(messages, stop_sequences=["conversation"])

"That's very kind of you to say! It's always nice to have a relaxed "
class transformers.HfApiEngine
<
source
>
( model: str = 'meta-llama/Meta-Llama-3.1-8B-Instruct'token: typing.Optional[str] = Nonemax_tokens: typing.Optional[int] = 1500timeout: typing.Optional[int] = 120 )

Parameters

model (str, optional, defaults to "meta-llama/Meta-Llama-3.1-8B-Instruct") — The Hugging Face model ID to be used for inference. This can be a path or model identifier from the Hugging Face model hub.
token (str, optional) — Token used by the Hugging Face API for authentication. If not provided, the class will use the token stored in the Hugging Face CLI configuration.
max_tokens (int, optional, defaults to 1500) — The maximum number of tokens allowed in the output.
timeout (int, optional, defaults to 120) — Timeout for the API request, in seconds.
Raises

ValueError

ValueError — If the model name is not provided.

A class to interact with Hugging Face’s Inference API for language model interaction.

This engine allows you to communicate with Hugging Face’s models using the Inference API. It can be used in both serverless mode or with a dedicated endpoint, supporting features like stop sequences and grammar customization.

Agent Types
Agents can handle any type of object in-between tools; tools, being completely multimodal, can accept and return text, image, audio, video, among other types. In order to increase compatibility between tools, as well as to correctly render these returns in ipython (jupyter, colab, ipython notebooks, …), we implement wrapper classes around these types.

The wrapped objects should continue behaving as initially; a text object should still behave as a string, an image object should still behave as a PIL.Image.

These types have three specific purposes:

Calling to_raw on the type should return the underlying object
Calling to_string on the type should return the object as a string: that can be the string in case of an AgentText but will be the path of the serialized version of the object in other instances
Displaying it in an ipython kernel should display the object correctly
AgentText
class transformers.agents.agent_types.AgentText
<
source
>
( value )

Text type returned by the agent. Behaves as a string.

AgentImage
class transformers.agents.agent_types.AgentImage
<
source
>
( value )

Image type returned by the agent. Behaves as a PIL.Image.

save
<
source
>
( output_bytesformat**params )

Parameters

output_bytes (bytes) — The output bytes to save the image to.
format (str) — The format to use for the output image. The format is the same as in PIL.Image.save.
**params — Additional parameters to pass to PIL.Image.save.
Saves the image to a file.

to_raw
<
source
>
( )

Returns the “raw” version of that object. In the case of an AgentImage, it is a PIL.Image.

to_string
<
source
>
( )

Returns the stringified version of that object. In the case of an AgentImage, it is a path to the serialized version of the image.

AgentAudio
class transformers.agents.agent_types.AgentAudio
<
source
>
( valuesamplerate = 16000 )

Audio type returned by the agent.

to_raw
<
source
>
( )

Returns the “raw” version of that object. It is a torch.Tensor object.

to_string
<
source
>
( )

Returns the stringified version of that object. In the case of an AgentAudio, it is a path to the serialized version of the audio.     Code to SynapTree my Knowledge Tree Builder to demo MoE and Agents:     import streamlit as st
import os
import glob
import re
import base64
import pytz
import time
import streamlit.components.v1 as components

from urllib.parse import quote
from gradio_client import Client
from datetime import datetime

# Page configuration
Site_Name = 'AI Knowledge Tree Builder 📈🌿 Grow Smarter with Every Click'
title = "🌳✨AI Knowledge Tree Builder🛠️🤓"
helpURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/'
bugURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/'
icons = '🌳✨🛠️🤓'

SidebarOutline = """🌳🤖 Designed with the following tenets:
1 📱 **Portability** - Universal access via any device & link sharing
2. ⚡ **Speed of Build** - Rapid deployments < 2min to production
3. 🔗 **Linkiness** - Programmatic access to AI knowledge sources
4. 🎯 **Abstractive** - Core stays lean isolating high-maintenance components
5. 🧠 **Memory** - Shareable flows deep-linked research paths
6. 👤 **Personalized** - Rapidly adapts knowledge base to user needs
7. 🐦 **Living Brevity** - Easily cloneable, self modify data public share results.
"""

st.set_page_config(
    page_title=title,
    page_icon=icons,
    layout="wide",
    initial_sidebar_state="auto",
    menu_items={
        'Get Help': helpURL,
        'Report a bug': bugURL,
        'About': title
    }
)

st.sidebar.markdown(SidebarOutline)

# Initialize session state variables
if 'selected_file' not in st.session_state:
    st.session_state.selected_file = None
if 'view_mode' not in st.session_state:
    st.session_state.view_mode = 'view'
if 'files' not in st.session_state:
    st.session_state.files = []

# --- MoE System Prompts Setup ---
moe_prompts_data = """1. Create a python streamlit app.py demonstrating the topic and show top 3 arxiv papers discussing this as reference.
2. Create a python gradio app.py demonstrating the topic and show top 3 arxiv papers discussing this as reference.
3. Create a mermaid model of the knowledge tree around concepts and parts of this topic. Use appropriate emojis.
4. Create a top three list of tools and techniques for this topic with markdown and emojis.
5. Create a specification in markdown outline with emojis for this topic.
6. Create an image generation prompt for this with Bosch and Turner oil painting influences.
7. Generate an image which describes this as a concept and area of study.
8. List top ten glossary terms with emojis related to this topic as markdown outline."""
# Split the data by lines and remove the numbering/period (assume each line has "number. " at the start)
moe_prompts_list = [line.split('. ', 1)[1].strip() for line in moe_prompts_data.splitlines() if '. ' in line]
moe_options = [""] + moe_prompts_list  # blank is default

# Place the selectbox at the top of the app; store selection in session_state key "selected_moe"
selected_moe = st.selectbox("Choose a MoE system prompt", options=moe_options, index=0, key="selected_moe")

# --- Utility Functions ---

def get_display_name(filename):
    """Extract text from parentheses or return filename as is."""
    match = re.search(r'\((.*?)\)', filename)
    if match:
        return match.group(1)
    return filename

def get_time_display(filename):
    """Extract just the time portion from the filename."""
    time_match = re.match(r'(\d{2}\d{2}[AP]M)', filename)
    if time_match:
        return time_match.group(1)
    return filename

def sanitize_filename(text):
    """Create a safe filename from text while preserving spaces."""
    safe_text = re.sub(r'[^\w\s-]', ' ', text)
    safe_text = re.sub(r'\s+', ' ', safe_text)
    safe_text = safe_text.strip()
    return safe_text[:50]

def generate_timestamp_filename(query):
    """Generate filename with format: 1103AM 11032024 (Query).md"""
    central = pytz.timezone('US/Central')
    current_time = datetime.now(central)
    time_str = current_time.strftime("%I%M%p")
    date_str = current_time.strftime("%m%d%Y")
    safe_query = sanitize_filename(query)
    filename = f"{time_str} {date_str} ({safe_query}).md"
    return filename

def delete_file(file_path):
    """Delete a file and return success status."""
    try:
        os.remove(file_path)
        return True
    except Exception as e:
        st.error(f"Error deleting file: {e}")
        return False

def save_ai_interaction(query, ai_result, is_rerun=False):
    """Save AI interaction to a markdown file with new filename format."""
    filename = generate_timestamp_filename(query)
    if is_rerun:
        content = f"""# Rerun Query
Original file content used for rerun:

{query}

# AI Response (Fun Version)
{ai_result}
"""
    else:
        content = f"""# Query: {query}

## AI Response
{ai_result}
"""
    try:
        with open(filename, 'w', encoding='utf-8') as f:
            f.write(content)
        return filename
    except Exception as e:
        st.error(f"Error saving file: {e}")
        return None

def get_file_download_link(file_path):
    """Generate a base64 download link for a file."""
    try:
        with open(file_path, 'r', encoding='utf-8') as f:
            content = f.read()
        b64 = base64.b64encode(content.encode()).decode()
        filename = os.path.basename(file_path)
        return f'<a href="data:text/markdown;base64,{b64}" download="{filename}">{get_display_name(filename)}</a>'
    except Exception as e:
        st.error(f"Error creating download link: {e}")
        return None

# --- New Functions for Markdown File Parsing and Link Tree ---

def clean_item_text(line):
    """
    Remove emoji and numbered prefix from a line.
    E.g., "🔧 1. Low-level system integrations compilers Cplusplus" becomes
    "Low-level system integrations compilers Cplusplus".
    Also remove any bold markdown markers.
    """
    # Remove leading emoji and number+period
    cleaned = re.sub(r'^[^\w]*(\d+\.\s*)', '', line)
    # Remove any remaining emoji (simple unicode range) and ** markers
    cleaned = re.sub(r'[\U0001F300-\U0001FAFF]', '', cleaned)
    cleaned = cleaned.replace("**", "")
    return cleaned.strip()

def clean_header_text(header_line):
    """
    Extract header text from a markdown header line.
    E.g., "🔧 **Systems, Infrastructure & Low-Level Engineering**" becomes
    "Systems, Infrastructure & Low-Level Engineering".
    """
    match = re.search(r'\*\*(.*?)\*\*', header_line)
    if match:
        return match.group(1).strip()
    return header_line.strip()

def parse_markdown_sections(md_text):
    """
    Parse markdown text into sections.
    Each section starts with a header line containing bold text.
    Returns a list of dicts with keys: 'header' and 'items' (list of lines).
    Skips any content before the first header.
    """
    sections = []
    current_section = None
    lines = md_text.splitlines()
    for line in lines:
        if line.strip() == "":
            continue
        # Check if line is a header (contains bold markdown and an emoji)
        if '**' in line:
            header = clean_header_text(line)
            current_section = {'header': header, 'raw': line, 'items': []}
            sections.append(current_section)
        elif current_section is not None:
            # Only add lines that appear to be list items (start with an emoji and number)
            if re.match(r'^[^\w]*\d+\.\s+', line):
                current_section['items'].append(line)
            else:
                if current_section['items']:
                    current_section['items'][-1] += " " + line.strip()
                else:
                    current_section['items'].append(line)
    return sections

def display_section_items(items):
    """
    Display list of items as links.
    For each item, clean the text and generate search links using your original link set.
    If a MoE system prompt is selected (non-blank), prepend it—with three spaces—before the cleaned text.
    """
    # Retrieve the current selected MoE prompt (if any)
    moe_prefix = st.session_state.get("selected_moe", "")
    search_urls = {
        "📚📖ArXiv": lambda k: f"/?q={quote(k)}",
        "🔮<sup>Google</sup>": lambda k: f"https://www.google.com/search?q={quote(k)}",
        "📺<sup>Youtube</sup>": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
        "🔭<sup>Bing</sup>": lambda k: f"https://www.bing.com/search?q={quote(k)}",
        "💡<sup>Claude</sup>": lambda k: f"https://claude.ai/new?q={quote(k)}",
        "📱X": lambda k: f"https://twitter.com/search?q={quote(k)}",
        "🤖<sup>GPT</sup>": lambda k: f"https://chatgpt.com/?model=o3-mini-high&q={quote(k)}",
    }
    for item in items:
        cleaned_text = clean_item_text(item)
        # If a MoE prompt is selected (non-blank), prepend it (with three spaces) to the cleaned text.
        final_query = (moe_prefix + "   " if moe_prefix else "") + cleaned_text
        links_md = ' '.join([f"[{emoji}]({url(final_query)})" for emoji, url in search_urls.items()])
        st.markdown(f"- **{cleaned_text}** {links_md}", unsafe_allow_html=True)

def display_markdown_tree():
    """
    Allow user to upload a .md file or load README.md.
    Parse the markdown into sections and display each section in a collapsed expander
    with the original markdown and a link tree of items.
    """
    st.markdown("## Markdown Tree Parser")
    uploaded_file = st.file_uploader("Upload a Markdown file", type=["md"])
    if uploaded_file is not None:
        md_content = uploaded_file.read().decode("utf-8")
    else:
        if os.path.exists("README.md"):
            with open("README.md", "r", encoding="utf-8") as f:
                md_content = f.read()
        else:
            st.info("No Markdown file uploaded and README.md not found.")
            return

    sections = parse_markdown_sections(md_content)
    if not sections:
        st.info("No sections found in the markdown file.")
        return

    for sec in sections:
        with st.expander(sec['header'], expanded=False):
            st.markdown(f"**Original Markdown:**\n\n{sec['raw']}\n")
            if sec['items']:
                st.markdown("**Link Tree:**")
                display_section_items(sec['items'])
            else:
                st.write("No items found in this section.")

# --- Existing AI and File Management Functions ---

def search_arxiv(query):
    st.write("Performing AI Lookup...")
    client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
    result1 = client.predict(
        prompt=query,
        llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1",
        stream_outputs=True,
        api_name="/ask_llm"
    )
    st.markdown("### Mixtral-8x7B-Instruct-v0.1 Result")
    st.markdown(result1)
    result2 = client.predict(
        prompt=query,
        llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
        stream_outputs=True,
        api_name="/ask_llm"
    )
    st.markdown("### Mistral-7B-Instruct-v0.2 Result")
    st.markdown(result2)
    combined_result = f"{result1}\n\n{result2}"
    return combined_result

@st.cache_resource
def SpeechSynthesis(result):
    documentHTML5 = '''
    <!DOCTYPE html>
    <html>
    <head>
        <title>Read It Aloud</title>
        <script type="text/javascript">
            function readAloud() {
                const text = document.getElementById("textArea").value;
                const speech = new SpeechSynthesisUtterance(text);
                window.speechSynthesis.speak(speech);
            }
        </script>
    </head>
    <body>
        <h1>🔊 Read It Aloud</h1>
        <textarea id="textArea" rows="10" cols="80">
    '''
    documentHTML5 += result
    documentHTML5 += '''
        </textarea>
        <br>
        <button onclick="readAloud()">🔊 Read Aloud</button>
    </body>
    </html>
    '''
    components.html(documentHTML5, width=1280, height=300)

def display_file_content(file_path):
    """Display file content with editing capabilities."""
    try:
        with open(file_path, 'r', encoding='utf-8') as f:
            content = f.read()
        if st.session_state.view_mode == 'view':
            st.markdown(content)
        else:
            edited_content = st.text_area(
                "Edit content",
                content,
                height=400,
                key=f"edit_{os.path.basename(file_path)}"
            )
            if st.button("Save Changes", key=f"save_{os.path.basename(file_path)}"):
                try:
                    with open(file_path, 'w', encoding='utf-8') as f:
                        f.write(edited_content)
                    st.success(f"Successfully saved changes to {file_path}")
                except Exception as e:
                    st.error(f"Error saving changes: {e}")
    except Exception as e:
        st.error(f"Error reading file: {e}")

def file_management_sidebar():
    """Redesigned sidebar with improved layout and additional functionality."""
    st.sidebar.title("📁 File Management")
    md_files = [file for file in glob.glob("*.md") if file.lower() != 'readme.md']
    md_files.sort()
    st.session_state.files = md_files
    if md_files:
        st.sidebar.markdown("### Saved Files")
        for idx, file in enumerate(md_files):
            st.sidebar.markdown("---")
            st.sidebar.text(get_time_display(file))
            download_link = get_file_download_link(file)
            if download_link:
                st.sidebar.markdown(download_link, unsafe_allow_html=True)
            col1, col2, col3, col4 = st.sidebar.columns(4)
            with col1:
                if st.button("📄View", key=f"view_{idx}"):
                    st.session_state.selected_file = file
                    st.session_state.view_mode = 'view'
            with col2:
                if st.button("✏️Edit", key=f"edit_{idx}"):
                    st.session_state.selected_file = file
                    st.session_state.view_mode = 'edit'
            with col3:
                if st.button("🔄Run", key=f"rerun_{idx}"):
                    try:
                        with open(file, 'r', encoding='utf-8') as f:
                            content = f.read()
                        rerun_prefix = """For the markdown below reduce the text to a humorous fun outline with emojis and markdown outline levels in outline that convey all the facts and adds wise quotes and funny statements to engage the reader:

"""
                        full_prompt = rerun_prefix + content
                        ai_result = perform_ai_lookup(full_prompt)
                        saved_file = save_ai_interaction(content, ai_result, is_rerun=True)
                        if saved_file:
                            st.success(f"Created fun version in {saved_file}")
                            st.session_state.selected_file = saved_file
                            st.session_state.view_mode = 'view'
                    except Exception as e:
                        st.error(f"Error during rerun: {e}")
            with col4:
                if st.button("🗑️Delete", key=f"delete_{idx}"):
                    if delete_file(file):
                        st.success(f"Deleted {file}")
                        st.rerun()
                    else:
                        st.error(f"Failed to delete {file}")
        st.sidebar.markdown("---")
        if st.sidebar.button("📝 Create New Note"):
            filename = generate_timestamp_filename("New Note")
            with open(filename, 'w', encoding='utf-8') as f:
                f.write("# New Markdown File\n")
            st.sidebar.success(f"Created: {filename}")
            st.session_state.selected_file = filename
            st.session_state.view_mode = 'edit'
    else:
        st.sidebar.write("No markdown files found.")
        if st.sidebar.button("📝 Create First Note"):
            filename = generate_timestamp_filename("New Note")
            with open(filename, 'w', encoding='utf-8') as f:
                f.write("# New Markdown File\n")
            st.sidebar.success(f"Created: {filename}")
            st.session_state.selected_file = filename
            st.session_state.view_mode = 'edit'

def perform_ai_lookup(query):
    start_time = time.strftime("%Y-%m-%d %H:%M:%S")
    client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
    response1 = client.predict(
        query,
        20,
        "Semantic Search",
        "mistralai/Mixtral-8x7B-Instruct-v0.1",
        api_name="/update_with_rag_md"
    )
    Question = '### 🔎 ' + query + '\r\n'
    References =  response1[0]
    ReferenceLinks = ""
    results = ""
    RunSecondQuery = True
    if RunSecondQuery:
        response2 = client.predict(
            query,
            "mistralai/Mixtral-8x7B-Instruct-v0.1",
            True,
            api_name="/ask_llm"
        )
        if len(response2) > 10:
            Answer = response2
            SpeechSynthesis(Answer)
            results = Question + '\r\n' + Answer + '\r\n' + References + '\r\n' + ReferenceLinks
            st.markdown(results)
    st.write('🔍Run of Multi-Agent System Paper Summary Spec is Complete')
    end_time = time.strftime("%Y-%m-%d %H:%M:%S")
    start_timestamp = time.mktime(time.strptime(start_time, "%Y-%m-%d %H:%M:%S"))
    end_timestamp = time.mktime(time.strptime(end_time, "%Y-%m-%d %H:%M:%S"))
    elapsed_seconds = end_timestamp - start_timestamp
    st.write(f"Start time: {start_time}")
    st.write(f"Finish time: {end_time}")
    st.write(f"Elapsed time: {elapsed_seconds:.2f} seconds")
    filename = generate_filename(query, "md")
    create_file(filename, query, results)
    return results

def generate_filename(prompt, file_type):
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
    safe_prompt = re.sub(r'\W+', '_', prompt)[:90]
    return f"{safe_date_time}_{safe_prompt}.{file_type}"

def create_file(filename, prompt, response):
    with open(filename, 'w', encoding='utf-8') as file:
        file.write(prompt + "\n\n" + response)

# --- Main Application ---

def main():
    st.markdown("### AI Knowledge Tree Builder 🧠🌱 Cultivate Your AI Mindscape!")
    query_params = st.query_params
    query = query_params.get('q', '')
    show_initial_content = True
    
    if query:
        show_initial_content = False
        st.write(f"### Search query received: {query}")
        try:
            ai_result = perform_ai_lookup(query)
            saved_file = save_ai_interaction(query, ai_result)
            if saved_file:
                st.success(f"Saved interaction to {saved_file}")
                st.session_state.selected_file = saved_file
                st.session_state.view_mode = 'view'
        except Exception as e:
            st.error(f"Error during AI lookup: {e}")

    file_management_sidebar()
    
    if st.session_state.selected_file:
        show_initial_content = False
        if os.path.exists(st.session_state.selected_file):
            st.markdown(f"### Current File: {st.session_state.selected_file}")
            display_file_content(st.session_state.selected_file)
        else:
            st.error("Selected file no longer exists.")
            st.session_state.selected_file = None
            st.rerun()

    if show_initial_content:
        display_markdown_tree()

if __name__ == "__main__":
    main()