Spaces:
Sleeping
Sleeping
File size: 65,616 Bytes
1c20b3b 5dd4a72 1c20b3b 5dd4a72 1c20b3b 49a96d0 73e1438 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 |
---
title: 🧠🌱SynapTree🌳
emoji: 🌳🧠🌱
colorFrom: indigo
colorTo: blue
sdk: streamlit
sdk_version: 1.42.2
app_file: app.py
pinned: false
license: mit
short_description: AI Knowledge Tree Builder AI
---
AIKnowledgeTreeBuilder is designed with the following tenets:
1. Portability - Universal access via any device & link sharing
2. Speed of Build - Rapid deployments (< 2min to production)
3. Linkiness - Programmatic access to major AI knowledge sources
4. Abstractive - Core stays lean by isolating high-maintenance components
5. Memory - Shareable flows with deep-linked research paths
6. Personalized - Rapidly adapts knowledge base to user needs
7. Living Brevity - Easily cloneable, self modifies with data and public to shares results.
🔧 **Systems, Infrastructure & Low-Level Engineering**
🔧 1. Low-level system integrations compilers Cplusplus
🔧 2. Linux or embedded systems experience
🔧 3. Hardware acceleration
🔧 4. Accelerating ML training inference across AI hardware
🔧 5. CUDA kernels
🔧 6. Optimum integration for specialized AI hardware
🔧 7. Cross-layer performance tuning hardware plus software
🔧 8. Data-center scale HPC or ML deployment
🔧 9. GPU accelerator architecture and CUDA kernel optimization
🔧 10. GPU kernel design and HPC concurrency
🔧 11. GPU cluster configuration and job scheduling
🔧 12. HPC provisioning and GPU cluster orchestration
🔧 13. HPC training pipeline and multi-GPU scheduling
🔧 14. HPC scheduling and multi-node debugging
🔧 15. HPC or large-batch evaluations
🔧 16. Hybrid on-premise and cloud HPC setups
🔧 17. Large-scale distributed computing and HPC performance
🔧 18. Low-level HPC code Cplusplus Triton and parallel programming
🔧 19. Low-level driver optimizations CUDA RDMA etc
🔧 20. Multi-GPU training and HPC acceleration
🔧 21. Overseeing HPC infrastructure for RL reasoning tasks
🔧 22. Performance modeling for large GPU fleets
🔧 23. Python and low-level matrix operations custom CUDA kernels
🔧 24. Python Cplusplus tooling for robust model tests
🔧 25. Stress-testing frontier LLMs and misuse detection
🔧 26. Building and optimizing distributed backend systems
🔧 27. Distributed system debugging and optimization
🔧 28. Distributed system design and MLOps best practices
🔧 29. High-performance optimization for ML training and inference
🔧 30. Implementing quantitative models of system throughput
🔧 31. Load balancing and high-availability design
🔧 32. Optimizing system performance under heavy ML loads
🔧 33. Performance optimization for LLM inference
🔧 34. Python-driven distributed training pipelines
🔧 35. Throughput and performance optimization
🔧 36. Cross-team platform innovation and proactive ML based resolution
🔧 37. Distributed systems design and scalable architectures
🔧 38. Observability anomaly detection and automated triage AIOps Python Go
🔧 39. ServiceNow expansions AIOps and AI automation
🔧 40. User-centric IT workflows and design integration
💻 **Software, Cloud, MLOps & Infrastructure**
💻 1. Python APIs and framework optimizations tokenizers datasets
💻 2. Python programming
💻 3. Rust programming
💻 4. PyTorch and Keras development
💻 5. TypeScript development
💻 6. MongoDB integration
💻 7. Kubernetes orchestration
💻 8. Building secure and robust developer experiences and APIs
💻 9. Full-stack development Nodejs Svelte AWS
💻 10. Javascript TypeScript machine learning libraries transformersjs huggingfacejs
💻 11. In-browser inference using WebGPU WASM ONNX
💻 12. Integrating with major cloud platforms AWS GCP Azure
💻 13. Containerization with Docker and MLOps pipelines
💻 14. Distributed data processing
💻 15. Building essential tooling for ML hubs
💻 16. Cloud infrastructure provisioning Terraform Helm
💻 17. Coordination of concurrency frameworks Kubernetes etc
💻 18. Data pipeline tooling Spark Airflow
💻 19. Deep learning systems performance profiling and tuning
💻 20. End-to-end MLOps and DevOps practices
💻 21. GPU-based microservices and DevOps
💻 22. Infrastructure as Code Terraform Kubernetes
💻 23. Managing GPU infrastructure at scale K8s orchestration
💻 24. Model and pipeline parallel strategies
💻 25. Python and Golang for infrastructure automation
💻 26. Python-based distributed frameworks Ray Horovod
💻 27. Reliability and performance scaling of infrastructure
💻 28. System reliability and SRE best practices
💻 29. Building observability and debugging tools for crawlers
💻 30. Building scalable data pipelines for language model training
💻 31. Cloud infrastructure optimization and integration AWS GCP
💻 32. Data quality assurance and validation systems
💻 33. Designing cloud-native architectures for AI services
💻 34. Ensuring system resilience and scalability
💻 35. High-availability and scalable system design
💻 36. Infrastructure design for large-scale ML systems
💻 37. Integration with ML frameworks
💻 38. Python and distributed computing frameworks Spark
💻 39. Python automation and container orchestration Kubernetes
💻 40. Python for automation and infrastructure monitoring
💻 41. Python scripting for deployment automation
💻 42. Scalable system architecture
💻 43. Enhancing reliability quality and time-to-market through performance optimization
💻 44. Managing production environments using Azure VSCode Datadog Qualtrics ServiceNow
💻 45. Building MLOps pipelines for containerizing models with Docker TypeScript Rust MongoDB Svelte TailwindCSS Kubernetes
🤖 **Machine Learning, AI & Model Development**
🤖 1. Performance tuning for Transformers in NLP CV and Speech
🤖 2. Industrial-level ML for text generation inference
🤖 3. Optimizing and scaling real-world ML services
🤖 4. Reliability and performance monitoring for ML systems
🤖 5. Ablation and training small models for data-quality analysis
🤖 6. Reducing model size and complexity via quantization
🤖 7. Neural sparse models and semantic dense retrieval SPLADE BM25
🤖 8. LLM usage and fine-tuning with chain-of-thought prompting
🤖 9. Energy efficiency and carbon footprint analysis in ML
🤖 10. Post-training methods for LLMs RLHF PPO DPO instruction tuning
🤖 11. Building LLM agents with external tool usage
🤖 12. Creating LLM agents that control GUIs via screen recordings
🤖 13. Building web-scale high-quality LLM training datasets
🤖 14. LLM-based code suggestions in Gradio Playground
🤖 15. Speech-to-text text-to-speech and speaker diarization
🤖 16. Abuse detection and ML-based risk scoring
🤖 17. AI safety and alignment methodologies RLHF reward models
🤖 18. Building ML-driven products using Python and PyTorch
🤖 19. Building massive training sets for LLMs
🤖 20. Developing next-generation AI capabilities
🤖 21. Collaborative research on AI risk and safety
🤖 22. Distributed training frameworks for large models
🤖 23. Experimental large-model prototypes
🤖 24. Exploratory ML research with LLMs and RL
🤖 25. Large-scale retrieval optimization RAG etc
🤖 26. Managing large ML architectures using Transformers
🤖 27. NLP pipelines using PyTorch and Transformers
🤖 28. Python-based data pipelines for query handling
🤖 29. Python-based LLM experimentation
🤖 30. Transformer-based LLM development and fine-tuning
🤖 31. Transformer modeling and novel architecture prototyping GPTlike
🤖 32. Vector databases and semantic search FAISS etc
🤖 33. Advanced distributed training techniques
🤖 34. Coordinating experimental design using Python
🤖 35. Designing experiments to probe LLM inner workings
🤖 36. Empirical AI research and reinforcement learning experiments
🤖 37. Leveraging Python for ML experiment pipelines
🤖 38. Reverse-engineering neural network mechanisms
🤖 39. Strategic roadmap for safe LLM development
🤖 40. Transformer-based LLM interpretability and fine-tuning
🤖 41. AI DL model productization using established frameworks
🤖 42. Utilizing AI frameworks PyTorch JAX TensorFlow TorchDynamo
🤖 43. Building AI inference APIs and MLOps solutions with Python
🤖 44. Developing agentic AI RAG and generative AI solutions LangChain AutoGen
🤖 45. End-to-end AI lifecycle management and distributed team leadership
🤖 46. Full-stack AI shipping with parallel and distributed training
🤖 47. GPU kernel integration with CUDA TensorRT and roadmap alignment
🤖 48. Large-language model inference and microservices design
🤖 49. LLM-based enterprise analytics systems
🤖 50. LLM diffusion-based product development
🤖 51. LLM alignment and RLHF pipelines for model safety
🤖 52. Mixed-precision and HPC algorithm development
🤖 53. Optimizing open-source DL frameworks PyTorch TensorFlow
🤖 54. Parallel and distributed training architectures and reinforcement learning methods PPO SAC QLearning
🤖 55. Python development for large-scale MLOps deployment
🤖 56. Scaling AI inference on hundreds of GPUs
🤖 57. System design for multi-agent AI workflows
🤖 58. Developing generative AI solutions with Python Streamlit Gradio and Torch
🤖 59. Developing Web AI solutions with Javascript TypeScript and HuggingFacejs
🤖 60. Creating WebML applications for on-device model inference
🤖 61. Building JSTS libraries for in-browser inference using ONNX and quantization with WebGPU WebNN and WASM
🤖 62. Driving forward quantization in the open-source ecosystem Accelerate PEFT Diffusers Bitsandbytes AWQ AutoGPTQ
🤖 63. Designing modern search solutions combining semantic and lexical search dense bi-encoder models SPLADE BM25
🤖 64. Training neural sparse models with Sentence Transformers integration
🤖 65. Leveraging chain-of-thought techniques in small models to outperform larger models
🤖 66. Addressing hardware acceleration and numerical precision challenges for scalable software
📊 **Data Engineering, Analytics & Data Governance**
📊 1. Advanced analytics and forecasting using Python R
📊 2. Alerting systems and dashboards Grafana etc
📊 3. Collaboration with data science teams
📊 4. Data modeling and warehousing
📊 5. Data storytelling and stakeholder communications
📊 6. Data warehousing and BI tools Looker etc
📊 7. Distributed compute frameworks Spark Flink
📊 8. ETL pipelines using Airflow and Spark
📊 9. Experiment design and user behavior modeling
📊 10. Handling large event data Kafka S3
📊 11. Managing data lakes and warehousing
📊 12. Python and SQL based data pipelines for finance
📊 13. Real-time anomaly detection using Python and streaming
📊 14. Root-cause analysis and incident response
📊 15. SQL and Python workflows for data visualization
📊 16. Product analytics and funnel insights
📊 17. Complex data pipelines and HPC optimization techniques
📊 18. Large-scale data ingestion transformation and curation
📊 19. Multi-modal data processing for diverse inputs
🔒 **Security, Compliance & Reliability**
🔒 1. Attack simulations and detection pipelines
🔒 2. Automation with Python and Bash
🔒 3. Cross-team incident response orchestration
🔒 4. IAM solutions AzureAD Okta
🔒 5. MacOS and iOS endpoint security frameworks
🔒 6. ML system vulnerability management
🔒 7. Risk assessment and vulnerability management
🔒 8. Security audits and penetration testing
🔒 9. Security best practices for AI products appsec devsecops
🔒 10. Secure architecture for HPC and ML pipelines
🔒 11. Security privacy and compliance in data management
🔒 12. Coordinating with security and compliance teams
🔒 13. Designing fault-tolerant high-availability LLM serving systems
🔒 14. Designing resilient and scalable architectures
🔒 15. Ensuring compliance and secure transactions
🔒 16. Familiarity with technical operations tools for security
🔒 17. Managing security processes for AI systems
🔒 18. Performance tuning for LLM serving systems
🔒 19. Process optimization and rapid troubleshooting for security
🔒 20. Python for reliability monitoring and automation
🔒 21. Python-based monitoring and fault-tolerance solutions
🔒 22. Risk management and compliance strategies
🔒 23. Cost optimization and reliability in cloud environments
🔒 24. Data quality standards and compliance Informatica Collibra Alation
🔒 25. Enterprise-wide data governance and policies for security
🔒 26. Hybrid cloud integration for secure operations
🔒 27. Identity management MFA ActiveDirectory AzureAD SSO ZeroTrust
🔒 28. Scalable database security MySQL PostgreSQL MongoDB Oracle
🔒 29. Security and operational excellence in IT and cloud
👥 **Leadership, Management & Collaboration**
👥 1. Coordinating engineering design and research teams
👥 2. Cross-functional leadership for platform roadmaps
👥 3. Cross-functional leadership across finance and engineering
👥 4. Cross-team collaboration and project leadership
👥 5. Data-driven product management AB testing and analytics
👥 6. Deep knowledge of AI frameworks and constraints
👥 7. Driving cross-team alignment on HPC resources
👥 8. People and team management for data teams
👥 9. Stakeholder management and vendor oversight
👥 10. Team-building and product strategy
👥 11. Team leadership and project delivery
👥 12. Balancing innovative research with product delivery
👥 13. Balancing rapid product delivery with AI safety standards
👥 14. Bridging customer requirements with technical development
👥 15. Collaboration across diverse technology teams
👥 16. Coordinating reinforcement learning experiments
👥 17. Coordinating with security and compliance teams
👥 18. Cross-functional agile collaboration for ML scalability
👥 19. Cross-functional team coaching and agile processes
👥 20. Cross-functional stakeholder management
👥 21. Cross-regional team alignment
👥 22. Cross-team collaboration for ML deployment
👥 23. Data-driven growth strategies for AI products
👥 24. Data-driven strategy implementation
👥 25. Detailed project planning and stakeholder coordination
👥 26. Driving execution of global market entry strategies
👥 27. Leading high-impact zero-to-one ML development teams
👥 28. Leading interdisciplinary ML research initiatives
👥 29. Leading teams building reinforcement learning systems
👥 30. Leading teams in ML interpretability research
👥 31. Overseeing Python-driven ML infrastructure
👥 32. Vendor and cross-team coordination
👥 33. Facilitating cross-disciplinary innovation
📱 **Full-Stack, UI, Mobile & Product Development**
📱 1. Building internal AI automation tools
📱 2. CI CD automation and testing frameworks
📱 3. Cloud-based microservices and REST GraphQL APIs
📱 4. GraphQL or REST based data fetching
📱 5. Integrating AI chat features in mobile applications
📱 6. LLM integration for user support flows
📱 7. MacOS iOS fleet management and security
📱 8. MDM solutions and iOS provisioning
📱 9. Native Android development Kotlin Java
📱 10. Observability and robust logging tracing
📱 11. Performance tuning and enhancing user experience for mobile
📱 12. Python Node backend development for AI features
📱 13. Rapid prototyping of AI based internal apps
📱 14. React Nextjs with Python for web services
📱 15. React TypeScript front-end development
📱 16. Integrating with GPT and other LLM endpoints
📱 17. TypeScript React and Python backend development
📱 18. Zero-touch deployment and patching
📱 19. Active engagement with open-source communities
📱 20. API design for scalable LLM interactions
📱 21. Bridging native mobile frontends with Python backends
📱 22. Bridging Python based ML models with frontend tooling
📱 23. Building internal tools to boost productivity in ML teams
📱 24. Building intuitive UIs integrated with Python backed ML
📱 25. Building robust developer infrastructure for ML products
📱 26. Crafting user-centric designs for AI interfaces
📱 27. Developer tools for prompt engineering and model testing
📱 28. End-to-end product delivery in software development
📱 29. Enhancing secure workflows and enterprise integrations
📱 30. Experimentation and iterative product development
📱 31. Full-stack development for ML driven products
📱 32. Integrating robust UIs with backend ML models
📱 33. Iterative design based on user feedback
📱 34. Mobile app development incorporating AI features
📱 35. Optimizing TypeScript Node build systems
📱 36. Python based API and data pipeline creation
📱 37. Senior engineering for practical AI and ML solutions
📱 38. Creating Python and Javascript HTML libraries for ML use cases
📱 39. Developing specialized software for healthcare ML use cases
📱 40. Utilizing library frameworks for scalable healthcare solutions
📱 41. Writing apps using Python Rust CUDA Transformers Keras
📱 42. Building AI solutions for healthcare with open-source libraries and Azure SaaS
📱 43. Designing and developing secure robust apps and APIs using Streamlit and Gradio
📱 44. Expertise with tools like Transformers Diffusers Accelerate PEFT Datasets
📱 45. Leveraging deep learning frameworks PyTorch XLA and cloud platforms
🎯 **Specialized Domains & Emerging Technologies**
🎯 1. 3D computer vision and neural rendering radiance fields
🎯 2. Advanced 3D reconstruction techniques Gaussian splatting NERF
🎯 3. Graphics engines and deep learning for graphics Unreal Unity
🎯 4. Low-level rendering pipelines DirectX Vulkan DX12
🎯 5. Performance optimized computer vision algorithms real-time tracking relighting
🎯 6. Semantic video search and 3D reconstruction services
🎯 7. Agent frameworks and LLM pipelines LangChain AutoGen
🎯 8. Concurrency in Cplusplus Python and vector database integration
🎯 9. Cross-layer performance analysis and debugging techniques
🎯 10. EDA and transistor-level performance modeling SPICE BSIM STA
🎯 11. GPU and SoC modeling and SoC architecture SystemC TLM
🎯 12. Next-generation hardware bringup and system simulation
🎯 13. Parallel computing fundamentals and performance simulation
🎯 14. Advanced development for programmable networks SDN SONiC P4
🎯 15. System design for multi-agent AI workflows
🎯 16. Advanced AI for self-driving software
🎯 17. Autonomous vehicle data pipelines and debugging
🎯 18. Car fleet software updates OTA and telemetry management
🎯 19. Large-scale multi-sensor data operations and calibration
🎯 20. Path planning and decision-making in robotics
🎯 21. Real-time embedded systems for robotics Cplusplus Python
🎯 22. Sensor fusion and HPC integration for perception systems
🎯 23. Domain randomization and sim-to-real transfer for reinforcement learning
🎯 24. GPU accelerated physics simulation Isaac Sim
🎯 25. Large-scale reinforcement learning methods PPO SAC QLearning
🎯 26. Policy optimization for robotics at scale
🎯 27. Reinforcement learning orchestration and simulation based training
🎯 28. Communication libraries NCCL NVSHMEM UCX
🎯 29. HPC networking InfiniBand RoCE and distributed GPU programming
🎯 30. GPU verification architecture techniques TLM SystemC modeling
🎯 31. Hardware prototyping and verification SDN SONiC P4 programmable hardware
🎯 32. GPU communications libraries management and performance tuning
🎯 33. Senior software architecture for data centers EthernetIP design switch OS
🎯 34. Developing Web AI solutions using Python Streamlit Gradio and Torch
🎯 35. Developing Web AI solutions with Javascript TypeScript and HuggingFacejs
🎯 36. Creating WebML applications for on-device model inference
🎯 37. Building JSTS libraries for in-browser inference using ONNX and quantization with WebGPU WebNN and WASM
🎯 38. Driving forward quantization in the open-source ecosystem Accelerate PEFT Diffusers Bitsandbytes AWQ AutoGPTQ
🎯 39. Designing modern search solutions combining semantic and lexical search dense bi-encoder models SPLADE BM25
🎯 40. Training neural sparse models with Sentence Transformers integration
🎯 41. Leveraging chain-of-thought techniques in small models to outperform larger models
🎯 42. Addressing hardware acceleration and numerical precision challenges for scalable software
📢 **Community, Open-Source & Communication**
📢 1. Educating the ML community on accelerating training and inference workloads
📢 2. Working through strategic collaborations
📢 3. Contributing documentation and code examples for technical and business audiences
📢 4. Building and evangelizing demos and strategic partner conversations
📢 5. Sharing fast Python AI development code samples and demos
📢 6. Communicating effectively in public speaking and technical education
📢 7. Engaging on social platforms GitHub LinkedIn Twitter Reddit
📢 8. Bringing fresh informed ideas while collaborating in a decentralized manner
📢 9. Writing technical documentation examples and notebooks to demonstrate new features
📢 10. Writing clear documentation across the product lifecycle
📢 11. Contributing to open-source libraries Transformers Datasets Accelerate
📢 12. Communicating via GitHub forums or Slack
📢 13. Demonstrating creativity to make complex technology accessible
-----
Lets create a gradio demo app that spins up 9 ML agents to help with the aspects of ML Development . 1st my agent code should follow and demo all the agent features in transformers, yet keep the UI witty emoji filled with humor and use either gradio or streamlit and have app.py plus requirements.txt. Any documentation say a markdown outline on the functions and help or docs would be in README.md file so three files always with those. 2nd I will have a knowledge tree program which already has a MoE. Can you please add the transformers agents code to it? Transformers AGents Docs: Agents
We provide two types of agents, based on the main Agent class:
CodeAgent acts in one shot, generating code to solve the task, then executes it at once.
ReactAgent acts step by step, each step consisting of one thought, then one tool call and execution. It has two classes:
ReactJsonAgent writes its tool calls in JSON.
ReactCodeAgent writes its tool calls in Python code.
Agent
class transformers.Agent
<
source
>
( tools: typing.Union[typing.List[transformers.agents.tools.Tool], transformers.agents.agents.Toolbox]llm_engine: typing.Callable = Nonesystem_prompt: typing.Optional[str] = Nonetool_description_template: typing.Optional[str] = Noneadditional_args: typing.Dict = {}max_iterations: int = 6tool_parser: typing.Optional[typing.Callable] = Noneadd_base_tools: bool = Falseverbose: int = 0grammar: typing.Optional[typing.Dict[str, str]] = Nonemanaged_agents: typing.Optional[typing.List] = Nonestep_callbacks: typing.Optional[typing.List[typing.Callable]] = Nonemonitor_metrics: bool = True )
execute_tool_call
<
source
>
( tool_name: strarguments: typing.Dict[str, str] )
Parameters
tool_name (str) — Name of the Tool to execute (should be one from self.toolbox).
arguments (Dict[str, str]) — Arguments passed to the Tool.
Execute tool with the provided input and returns the result. This method replaces arguments with the actual values from the state if they refer to state variables.
extract_action
<
source
>
( llm_output: strsplit_token: str )
Parameters
llm_output (str) — Output of the LLM
split_token (str) — Separator for the action. Should match the example in the system prompt.
Parse action from the LLM output
run
<
source
>
( **kwargs )
To be implemented in the child class
write_inner_memory_from_logs
<
source
>
( summary_mode: typing.Optional[bool] = False )
Reads past llm_outputs, actions, and observations or errors from the logs into a series of messages that can be used as input to the LLM.
CodeAgent
class transformers.CodeAgent
<
source
>
( tools: typing.List[transformers.agents.tools.Tool]llm_engine: typing.Optional[typing.Callable] = Nonesystem_prompt: typing.Optional[str] = Nonetool_description_template: typing.Optional[str] = Nonegrammar: typing.Optional[typing.Dict[str, str]] = Noneadditional_authorized_imports: typing.Optional[typing.List[str]] = None**kwargs )
A class for an agent that solves the given task using a single block of code. It plans all its actions, then executes all in one shot.
parse_code_blob
<
source
>
( result: str )
Override this method if you want to change the way the code is cleaned in the run method.
run
<
source
>
( task: strreturn_generated_code: bool = False**kwargs )
Parameters
task (str) — The task to perform
return_generated_code (bool, optional, defaults to False) — Whether to return the generated code instead of running it
kwargs (additional keyword arguments, optional) — Any keyword argument to send to the agent when evaluating the code.
Runs the agent for the given task.
Example:
Copied
from transformers.agents import CodeAgent
agent = CodeAgent(tools=[])
agent.run("What is the result of 2 power 3.7384?")
React agents
class transformers.ReactAgent
<
source
>
( tools: typing.List[transformers.agents.tools.Tool]llm_engine: typing.Optional[typing.Callable] = Nonesystem_prompt: typing.Optional[str] = Nonetool_description_template: typing.Optional[str] = Nonegrammar: typing.Optional[typing.Dict[str, str]] = Noneplan_type: typing.Optional[str] = Noneplanning_interval: typing.Optional[int] = None**kwargs )
This agent that solves the given task step by step, using the ReAct framework: While the objective is not reached, the agent will perform a cycle of thinking and acting. The action will be parsed from the LLM output: it consists in calls to tools from the toolbox, with arguments chosen by the LLM engine.
direct_run
<
source
>
( task: str )
Runs the agent in direct mode, returning outputs only at the end: should be launched only in the run method.
planning_step
<
source
>
( taskis_first_step: bool = Falseiteration: int = None )
Parameters
task (str) — The task to perform
is_first_step (bool) — If this step is not the first one, the plan should be an update over a previous plan.
iteration (int) — The number of the current step, used as an indication for the LLM.
Used periodically by the agent to plan the next steps to reach the objective.
provide_final_answer
<
source
>
( task )
This method provides a final answer to the task, based on the logs of the agent’s interactions.
run
<
source
>
( task: strstream: bool = Falsereset: bool = True**kwargs )
Parameters
task (str) — The task to perform
Runs the agent for the given task.
Example:
Copied
from transformers.agents import ReactCodeAgent
agent = ReactCodeAgent(tools=[])
agent.run("What is the result of 2 power 3.7384?")
stream_run
<
source
>
( task: str )
Runs the agent in streaming mode, yielding steps as they are executed: should be launched only in the run method.
class transformers.ReactJsonAgent
<
source
>
( tools: typing.List[transformers.agents.tools.Tool]llm_engine: typing.Optional[typing.Callable] = Nonesystem_prompt: typing.Optional[str] = Nonetool_description_template: typing.Optional[str] = Nonegrammar: typing.Optional[typing.Dict[str, str]] = Noneplanning_interval: typing.Optional[int] = None**kwargs )
This agent that solves the given task step by step, using the ReAct framework: While the objective is not reached, the agent will perform a cycle of thinking and acting. The tool calls will be formulated by the LLM in JSON format, then parsed and executed.
step
<
source
>
( log_entry: typing.Dict[str, typing.Any] )
Perform one step in the ReAct framework: the agent thinks, acts, and observes the result. The errors are raised here, they are caught and logged in the run() method.
class transformers.ReactCodeAgent
<
source
>
( tools: typing.List[transformers.agents.tools.Tool]llm_engine: typing.Optional[typing.Callable] = Nonesystem_prompt: typing.Optional[str] = Nonetool_description_template: typing.Optional[str] = Nonegrammar: typing.Optional[typing.Dict[str, str]] = Noneadditional_authorized_imports: typing.Optional[typing.List[str]] = Noneplanning_interval: typing.Optional[int] = None**kwargs )
This agent that solves the given task step by step, using the ReAct framework: While the objective is not reached, the agent will perform a cycle of thinking and acting. The tool calls will be formulated by the LLM in code format, then parsed and executed.
step
<
source
>
( log_entry: typing.Dict[str, typing.Any] )
Perform one step in the ReAct framework: the agent thinks, acts, and observes the result. The errors are raised here, they are caught and logged in the run() method.
ManagedAgent
class transformers.ManagedAgent
<
source
>
( agentnamedescriptionadditional_prompting = Noneprovide_run_summary = False )
Tools
load_tool
transformers.load_tool
<
source
>
( task_or_repo_idmodel_repo_id = Nonetoken = None**kwargs )
Parameters
task_or_repo_id (str) — The task for which to load the tool or a repo ID of a tool on the Hub. Tasks implemented in Transformers are:
"document_question_answering"
"image_question_answering"
"speech_to_text"
"text_to_speech"
"translation"
model_repo_id (str, optional) — Use this argument to use a different model than the default one for the tool you selected.
token (str, optional) — The token to identify you on hf.co. If unset, will use the token generated when running huggingface-cli login (stored in ~/.huggingface).
kwargs (additional keyword arguments, optional) — Additional keyword arguments that will be split in two: all arguments relevant to the Hub (such as cache_dir, revision, subfolder) will be used when downloading the files for your tool, and the others will be passed along to its init.
Main function to quickly load a tool, be it on the Hub or in the Transformers library.
Loading a tool means that you’ll download the tool and execute it locally. ALWAYS inspect the tool you’re downloading before loading it within your runtime, as you would do when installing a package using pip/npm/apt.
tool
transformers.tool
<
source
>
( tool_function: typing.Callable )
Parameters
tool_function — Your function. Should have type hints for each input and a type hint for the output.
Should also have a docstring description including an ‘Args —’ part where each argument is described.
Converts a function into an instance of a Tool subclass.
Tool
class transformers.Tool
<
source
>
( *args**kwargs )
A base class for the functions used by the agent. Subclass this and implement the __call__ method as well as the following class attributes:
description (str) — A short description of what your tool does, the inputs it expects and the output(s) it will return. For instance ‘This is a tool that downloads a file from a url. It takes the url as input, and returns the text contained in the file’.
name (str) — A performative name that will be used for your tool in the prompt to the agent. For instance "text-classifier" or "image_generator".
inputs (Dict[str, Dict[str, Union[str, type]]]) — The dict of modalities expected for the inputs. It has one typekey and a descriptionkey. This is used by launch_gradio_demo or to make a nice space from your tool, and also can be used in the generated description for your tool.
output_type (type) — The type of the tool output. This is used by launch_gradio_demo or to make a nice space from your tool, and also can be used in the generated description for your tool.
You can also override the method setup() if your tool as an expensive operation to perform before being usable (such as loading a model). setup() will be called the first time you use your tool, but not at instantiation.
from_gradio
<
source
>
( gradio_tool )
Creates a Tool from a gradio tool.
from_hub
<
source
>
( repo_id: strtoken: typing.Optional[str] = None**kwargs )
Parameters
repo_id (str) — The name of the repo on the Hub where your tool is defined.
token (str, optional) — The token to identify you on hf.co. If unset, will use the token generated when running huggingface-cli login (stored in ~/.huggingface).
kwargs (additional keyword arguments, optional) — Additional keyword arguments that will be split in two: all arguments relevant to the Hub (such as cache_dir, revision, subfolder) will be used when downloading the files for your tool, and the others will be passed along to its init.
Loads a tool defined on the Hub.
Loading a tool from the Hub means that you’ll download the tool and execute it locally. ALWAYS inspect the tool you’re downloading before loading it within your runtime, as you would do when installing a package using pip/npm/apt.
from_langchain
<
source
>
( langchain_tool )
Creates a Tool from a langchain tool.
from_space
<
source
>
( space_id: strname: strdescription: strapi_name: typing.Optional[str] = Nonetoken: typing.Optional[str] = None ) → Tool
Parameters
space_id (str) — The id of the Space on the Hub.
name (str) — The name of the tool.
description (str) — The description of the tool.
api_name (str, optional) — The specific api_name to use, if the space has several tabs. If not precised, will default to the first available api.
token (str, optional) — Add your token to access private spaces or increase your GPU quotas.
Returns
Tool
The Space, as a tool.
Creates a Tool from a Space given its id on the Hub.
Examples:
Copied
image_generator = Tool.from_space(
space_id="black-forest-labs/FLUX.1-schnell",
name="image-generator",
description="Generate an image from a prompt"
)
image = image_generator("Generate an image of a cool surfer in Tahiti")
Copied
face_swapper = Tool.from_space(
"tuan2308/face-swap",
"face_swapper",
"Tool that puts the face shown on the first image on the second image. You can give it paths to images.",
)
image = face_swapper('./aymeric.jpeg', './ruth.jpg')
push_to_hub
<
source
>
( repo_id: strcommit_message: str = 'Upload tool'private: typing.Optional[bool] = Nonetoken: typing.Union[bool, str, NoneType] = Nonecreate_pr: bool = False )
Parameters
repo_id (str) — The name of the repository you want to push your tool to. It should contain your organization name when pushing to a given organization.
commit_message (str, optional, defaults to "Upload tool") — Message to commit while pushing.
private (bool, optional) — Whether to make the repo private. If None (default), the repo will be public unless the organization’s default is private. This value is ignored if the repo already exists.
token (bool or str, optional) — The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated when running huggingface-cli login (stored in ~/.huggingface).
create_pr (bool, optional, defaults to False) — Whether or not to create a PR with the uploaded files or directly commit.
Upload the tool to the Hub.
For this method to work properly, your tool must have been defined in a separate module (not __main__).
For instance:
Copied
from my_tool_module import MyTool
my_tool = MyTool()
my_tool.push_to_hub("my-username/my-space")
save
<
source
>
( output_dir )
Parameters
output_dir (str) — The folder in which you want to save your tool.
Saves the relevant code files for your tool so it can be pushed to the Hub. This will copy the code of your tool in output_dir as well as autogenerate:
a config file named tool_config.json
an app.py file so that your tool can be converted to a space
a requirements.txt containing the names of the module used by your tool (as detected when inspecting its code)
You should only use this method to save tools that are defined in a separate module (not __main__).
setup
<
source
>
( )
Overwrite this method here for any operation that is expensive and needs to be executed before you start using your tool. Such as loading a big model.
Toolbox
class transformers.Toolbox
<
source
>
( tools: typing.List[transformers.agents.tools.Tool]add_base_tools: bool = False )
Parameters
tools (List[Tool]) — The list of tools to instantiate the toolbox with
add_base_tools (bool, defaults to False, optional, defaults to False) — Whether to add the tools available within transformers to the toolbox.
The toolbox contains all tools that the agent can perform operations with, as well as a few methods to manage them.
add_tool
<
source
>
( tool: Tool )
Parameters
tool (Tool) — The tool to add to the toolbox.
Adds a tool to the toolbox
clear_toolbox
<
source
>
( )
Clears the toolbox
remove_tool
<
source
>
( tool_name: str )
Parameters
tool_name (str) — The tool to remove from the toolbox.
Removes a tool from the toolbox
show_tool_descriptions
<
source
>
( tool_description_template: str = None )
Parameters
tool_description_template (str, optional) — The template to use to describe the tools. If not provided, the default template will be used.
Returns the description of all tools in the toolbox
update_tool
<
source
>
( tool: Tool )
Parameters
tool (Tool) — The tool to update to the toolbox.
Updates a tool in the toolbox according to its name.
PipelineTool
class transformers.PipelineTool
<
source
>
( model = Nonepre_processor = Nonepost_processor = Nonedevice = Nonedevice_map = Nonemodel_kwargs = Nonetoken = None**hub_kwargs )
Parameters
model (str or PreTrainedModel, optional) — The name of the checkpoint to use for the model, or the instantiated model. If unset, will default to the value of the class attribute default_checkpoint.
pre_processor (str or Any, optional) — The name of the checkpoint to use for the pre-processor, or the instantiated pre-processor (can be a tokenizer, an image processor, a feature extractor or a processor). Will default to the value of model if unset.
post_processor (str or Any, optional) — The name of the checkpoint to use for the post-processor, or the instantiated pre-processor (can be a tokenizer, an image processor, a feature extractor or a processor). Will default to the pre_processor if unset.
device (int, str or torch.device, optional) — The device on which to execute the model. Will default to any accelerator available (GPU, MPS etc…), the CPU otherwise.
device_map (str or dict, optional) — If passed along, will be used to instantiate the model.
model_kwargs (dict, optional) — Any keyword argument to send to the model instantiation.
token (str, optional) — The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated when running huggingface-cli login (stored in ~/.huggingface).
hub_kwargs (additional keyword arguments, optional) — Any additional keyword argument to send to the methods that will load the data from the Hub.
A Tool tailored towards Transformer models. On top of the class attributes of the base class Tool, you will need to specify:
model_class (type) — The class to use to load the model in this tool.
default_checkpoint (str) — The default checkpoint that should be used when the user doesn’t specify one.
pre_processor_class (type, optional, defaults to AutoProcessor) — The class to use to load the pre-processor
post_processor_class (type, optional, defaults to AutoProcessor) — The class to use to load the post-processor (when different from the pre-processor).
decode
<
source
>
( outputs )
Uses the post_processor to decode the model output.
encode
<
source
>
( raw_inputs )
Uses the pre_processor to prepare the inputs for the model.
forward
<
source
>
( inputs )
Sends the inputs through the model.
setup
<
source
>
( )
Instantiates the pre_processor, model and post_processor if necessary.
launch_gradio_demo
transformers.launch_gradio_demo
<
source
>
( tool_class: Tool )
Parameters
tool_class (type) — The class of the tool for which to launch the demo.
Launches a gradio demo for a tool. The corresponding tool class needs to properly implement the class attributes inputs and output_type.
stream_to_gradio
transformers.stream_to_gradio
<
source
>
( agenttask: strtest_mode: bool = False**kwargs )
Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages.
ToolCollection
class transformers.ToolCollection
<
source
>
( collection_slug: strtoken: typing.Optional[str] = None )
Parameters
collection_slug (str) — The collection slug referencing the collection.
token (str, optional) — The authentication token if the collection is private.
Tool collections enable loading all Spaces from a collection in order to be added to the agent’s toolbox.
[!NOTE] Only Spaces will be fetched, so you can feel free to add models and datasets to your collection if you’d like for this collection to showcase them.
Example:
Copied
from transformers import ToolCollection, ReactCodeAgent
image_tool_collection = ToolCollection(collection_slug="huggingface-tools/diffusion-tools-6630bb19a942c2306a2cdb6f")
agent = ReactCodeAgent(tools=[*image_tool_collection.tools], add_base_tools=True)
agent.run("Please draw me a picture of rivers and lakes.")
Engines
You’re free to create and use your own engines to be usable by the Agents framework. These engines have the following specification:
Follow the messages format for its input (List[Dict[str, str]]) and return a string.
Stop generating outputs before the sequences passed in the argument stop_sequences
TransformersEngine
For convenience, we have added a TransformersEngine that implements the points above, taking a pre-initialized Pipeline as input.
Copied
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, TransformersEngine
model_name = "HuggingFaceTB/SmolLM-135M-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
engine = TransformersEngine(pipe)
engine([{"role": "user", "content": "Ok!"}], stop_sequences=["great"])
"What a "
class transformers.TransformersEngine
<
source
>
( pipeline: Pipelinemodel_id: typing.Optional[str] = None )
This engine uses a pre-initialized local text-generation pipeline.
HfApiEngine
The HfApiEngine is an engine that wraps an HF Inference API client for the execution of the LLM.
Copied
from transformers import HfApiEngine
messages = [
{"role": "user", "content": "Hello, how are you?"},
{"role": "assistant", "content": "I'm doing great. How can I help you today?"},
{"role": "user", "content": "No need to help, take it easy."},
]
HfApiEngine()(messages, stop_sequences=["conversation"])
"That's very kind of you to say! It's always nice to have a relaxed "
class transformers.HfApiEngine
<
source
>
( model: str = 'meta-llama/Meta-Llama-3.1-8B-Instruct'token: typing.Optional[str] = Nonemax_tokens: typing.Optional[int] = 1500timeout: typing.Optional[int] = 120 )
Parameters
model (str, optional, defaults to "meta-llama/Meta-Llama-3.1-8B-Instruct") — The Hugging Face model ID to be used for inference. This can be a path or model identifier from the Hugging Face model hub.
token (str, optional) — Token used by the Hugging Face API for authentication. If not provided, the class will use the token stored in the Hugging Face CLI configuration.
max_tokens (int, optional, defaults to 1500) — The maximum number of tokens allowed in the output.
timeout (int, optional, defaults to 120) — Timeout for the API request, in seconds.
Raises
ValueError
ValueError — If the model name is not provided.
A class to interact with Hugging Face’s Inference API for language model interaction.
This engine allows you to communicate with Hugging Face’s models using the Inference API. It can be used in both serverless mode or with a dedicated endpoint, supporting features like stop sequences and grammar customization.
Agent Types
Agents can handle any type of object in-between tools; tools, being completely multimodal, can accept and return text, image, audio, video, among other types. In order to increase compatibility between tools, as well as to correctly render these returns in ipython (jupyter, colab, ipython notebooks, …), we implement wrapper classes around these types.
The wrapped objects should continue behaving as initially; a text object should still behave as a string, an image object should still behave as a PIL.Image.
These types have three specific purposes:
Calling to_raw on the type should return the underlying object
Calling to_string on the type should return the object as a string: that can be the string in case of an AgentText but will be the path of the serialized version of the object in other instances
Displaying it in an ipython kernel should display the object correctly
AgentText
class transformers.agents.agent_types.AgentText
<
source
>
( value )
Text type returned by the agent. Behaves as a string.
AgentImage
class transformers.agents.agent_types.AgentImage
<
source
>
( value )
Image type returned by the agent. Behaves as a PIL.Image.
save
<
source
>
( output_bytesformat**params )
Parameters
output_bytes (bytes) — The output bytes to save the image to.
format (str) — The format to use for the output image. The format is the same as in PIL.Image.save.
**params — Additional parameters to pass to PIL.Image.save.
Saves the image to a file.
to_raw
<
source
>
( )
Returns the “raw” version of that object. In the case of an AgentImage, it is a PIL.Image.
to_string
<
source
>
( )
Returns the stringified version of that object. In the case of an AgentImage, it is a path to the serialized version of the image.
AgentAudio
class transformers.agents.agent_types.AgentAudio
<
source
>
( valuesamplerate = 16000 )
Audio type returned by the agent.
to_raw
<
source
>
( )
Returns the “raw” version of that object. It is a torch.Tensor object.
to_string
<
source
>
( )
Returns the stringified version of that object. In the case of an AgentAudio, it is a path to the serialized version of the audio. Code to SynapTree my Knowledge Tree Builder to demo MoE and Agents: import streamlit as st
import os
import glob
import re
import base64
import pytz
import time
import streamlit.components.v1 as components
from urllib.parse import quote
from gradio_client import Client
from datetime import datetime
# Page configuration
Site_Name = 'AI Knowledge Tree Builder 📈🌿 Grow Smarter with Every Click'
title = "🌳✨AI Knowledge Tree Builder🛠️🤓"
helpURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/'
bugURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/'
icons = '🌳✨🛠️🤓'
SidebarOutline = """🌳🤖 Designed with the following tenets:
1 📱 **Portability** - Universal access via any device & link sharing
2. ⚡ **Speed of Build** - Rapid deployments < 2min to production
3. 🔗 **Linkiness** - Programmatic access to AI knowledge sources
4. 🎯 **Abstractive** - Core stays lean isolating high-maintenance components
5. 🧠 **Memory** - Shareable flows deep-linked research paths
6. 👤 **Personalized** - Rapidly adapts knowledge base to user needs
7. 🐦 **Living Brevity** - Easily cloneable, self modify data public share results.
"""
st.set_page_config(
page_title=title,
page_icon=icons,
layout="wide",
initial_sidebar_state="auto",
menu_items={
'Get Help': helpURL,
'Report a bug': bugURL,
'About': title
}
)
st.sidebar.markdown(SidebarOutline)
# Initialize session state variables
if 'selected_file' not in st.session_state:
st.session_state.selected_file = None
if 'view_mode' not in st.session_state:
st.session_state.view_mode = 'view'
if 'files' not in st.session_state:
st.session_state.files = []
# --- MoE System Prompts Setup ---
moe_prompts_data = """1. Create a python streamlit app.py demonstrating the topic and show top 3 arxiv papers discussing this as reference.
2. Create a python gradio app.py demonstrating the topic and show top 3 arxiv papers discussing this as reference.
3. Create a mermaid model of the knowledge tree around concepts and parts of this topic. Use appropriate emojis.
4. Create a top three list of tools and techniques for this topic with markdown and emojis.
5. Create a specification in markdown outline with emojis for this topic.
6. Create an image generation prompt for this with Bosch and Turner oil painting influences.
7. Generate an image which describes this as a concept and area of study.
8. List top ten glossary terms with emojis related to this topic as markdown outline."""
# Split the data by lines and remove the numbering/period (assume each line has "number. " at the start)
moe_prompts_list = [line.split('. ', 1)[1].strip() for line in moe_prompts_data.splitlines() if '. ' in line]
moe_options = [""] + moe_prompts_list # blank is default
# Place the selectbox at the top of the app; store selection in session_state key "selected_moe"
selected_moe = st.selectbox("Choose a MoE system prompt", options=moe_options, index=0, key="selected_moe")
# --- Utility Functions ---
def get_display_name(filename):
"""Extract text from parentheses or return filename as is."""
match = re.search(r'\((.*?)\)', filename)
if match:
return match.group(1)
return filename
def get_time_display(filename):
"""Extract just the time portion from the filename."""
time_match = re.match(r'(\d{2}\d{2}[AP]M)', filename)
if time_match:
return time_match.group(1)
return filename
def sanitize_filename(text):
"""Create a safe filename from text while preserving spaces."""
safe_text = re.sub(r'[^\w\s-]', ' ', text)
safe_text = re.sub(r'\s+', ' ', safe_text)
safe_text = safe_text.strip()
return safe_text[:50]
def generate_timestamp_filename(query):
"""Generate filename with format: 1103AM 11032024 (Query).md"""
central = pytz.timezone('US/Central')
current_time = datetime.now(central)
time_str = current_time.strftime("%I%M%p")
date_str = current_time.strftime("%m%d%Y")
safe_query = sanitize_filename(query)
filename = f"{time_str} {date_str} ({safe_query}).md"
return filename
def delete_file(file_path):
"""Delete a file and return success status."""
try:
os.remove(file_path)
return True
except Exception as e:
st.error(f"Error deleting file: {e}")
return False
def save_ai_interaction(query, ai_result, is_rerun=False):
"""Save AI interaction to a markdown file with new filename format."""
filename = generate_timestamp_filename(query)
if is_rerun:
content = f"""# Rerun Query
Original file content used for rerun:
{query}
# AI Response (Fun Version)
{ai_result}
"""
else:
content = f"""# Query: {query}
## AI Response
{ai_result}
"""
try:
with open(filename, 'w', encoding='utf-8') as f:
f.write(content)
return filename
except Exception as e:
st.error(f"Error saving file: {e}")
return None
def get_file_download_link(file_path):
"""Generate a base64 download link for a file."""
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
b64 = base64.b64encode(content.encode()).decode()
filename = os.path.basename(file_path)
return f'<a href="data:text/markdown;base64,{b64}" download="{filename}">{get_display_name(filename)}</a>'
except Exception as e:
st.error(f"Error creating download link: {e}")
return None
# --- New Functions for Markdown File Parsing and Link Tree ---
def clean_item_text(line):
"""
Remove emoji and numbered prefix from a line.
E.g., "🔧 1. Low-level system integrations compilers Cplusplus" becomes
"Low-level system integrations compilers Cplusplus".
Also remove any bold markdown markers.
"""
# Remove leading emoji and number+period
cleaned = re.sub(r'^[^\w]*(\d+\.\s*)', '', line)
# Remove any remaining emoji (simple unicode range) and ** markers
cleaned = re.sub(r'[\U0001F300-\U0001FAFF]', '', cleaned)
cleaned = cleaned.replace("**", "")
return cleaned.strip()
def clean_header_text(header_line):
"""
Extract header text from a markdown header line.
E.g., "🔧 **Systems, Infrastructure & Low-Level Engineering**" becomes
"Systems, Infrastructure & Low-Level Engineering".
"""
match = re.search(r'\*\*(.*?)\*\*', header_line)
if match:
return match.group(1).strip()
return header_line.strip()
def parse_markdown_sections(md_text):
"""
Parse markdown text into sections.
Each section starts with a header line containing bold text.
Returns a list of dicts with keys: 'header' and 'items' (list of lines).
Skips any content before the first header.
"""
sections = []
current_section = None
lines = md_text.splitlines()
for line in lines:
if line.strip() == "":
continue
# Check if line is a header (contains bold markdown and an emoji)
if '**' in line:
header = clean_header_text(line)
current_section = {'header': header, 'raw': line, 'items': []}
sections.append(current_section)
elif current_section is not None:
# Only add lines that appear to be list items (start with an emoji and number)
if re.match(r'^[^\w]*\d+\.\s+', line):
current_section['items'].append(line)
else:
if current_section['items']:
current_section['items'][-1] += " " + line.strip()
else:
current_section['items'].append(line)
return sections
def display_section_items(items):
"""
Display list of items as links.
For each item, clean the text and generate search links using your original link set.
If a MoE system prompt is selected (non-blank), prepend it—with three spaces—before the cleaned text.
"""
# Retrieve the current selected MoE prompt (if any)
moe_prefix = st.session_state.get("selected_moe", "")
search_urls = {
"📚📖ArXiv": lambda k: f"/?q={quote(k)}",
"🔮<sup>Google</sup>": lambda k: f"https://www.google.com/search?q={quote(k)}",
"📺<sup>Youtube</sup>": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
"🔭<sup>Bing</sup>": lambda k: f"https://www.bing.com/search?q={quote(k)}",
"💡<sup>Claude</sup>": lambda k: f"https://claude.ai/new?q={quote(k)}",
"📱X": lambda k: f"https://twitter.com/search?q={quote(k)}",
"🤖<sup>GPT</sup>": lambda k: f"https://chatgpt.com/?model=o3-mini-high&q={quote(k)}",
}
for item in items:
cleaned_text = clean_item_text(item)
# If a MoE prompt is selected (non-blank), prepend it (with three spaces) to the cleaned text.
final_query = (moe_prefix + " " if moe_prefix else "") + cleaned_text
links_md = ' '.join([f"[{emoji}]({url(final_query)})" for emoji, url in search_urls.items()])
st.markdown(f"- **{cleaned_text}** {links_md}", unsafe_allow_html=True)
def display_markdown_tree():
"""
Allow user to upload a .md file or load README.md.
Parse the markdown into sections and display each section in a collapsed expander
with the original markdown and a link tree of items.
"""
st.markdown("## Markdown Tree Parser")
uploaded_file = st.file_uploader("Upload a Markdown file", type=["md"])
if uploaded_file is not None:
md_content = uploaded_file.read().decode("utf-8")
else:
if os.path.exists("README.md"):
with open("README.md", "r", encoding="utf-8") as f:
md_content = f.read()
else:
st.info("No Markdown file uploaded and README.md not found.")
return
sections = parse_markdown_sections(md_content)
if not sections:
st.info("No sections found in the markdown file.")
return
for sec in sections:
with st.expander(sec['header'], expanded=False):
st.markdown(f"**Original Markdown:**\n\n{sec['raw']}\n")
if sec['items']:
st.markdown("**Link Tree:**")
display_section_items(sec['items'])
else:
st.write("No items found in this section.")
# --- Existing AI and File Management Functions ---
def search_arxiv(query):
st.write("Performing AI Lookup...")
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
result1 = client.predict(
prompt=query,
llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1",
stream_outputs=True,
api_name="/ask_llm"
)
st.markdown("### Mixtral-8x7B-Instruct-v0.1 Result")
st.markdown(result1)
result2 = client.predict(
prompt=query,
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
stream_outputs=True,
api_name="/ask_llm"
)
st.markdown("### Mistral-7B-Instruct-v0.2 Result")
st.markdown(result2)
combined_result = f"{result1}\n\n{result2}"
return combined_result
@st.cache_resource
def SpeechSynthesis(result):
documentHTML5 = '''
<!DOCTYPE html>
<html>
<head>
<title>Read It Aloud</title>
<script type="text/javascript">
function readAloud() {
const text = document.getElementById("textArea").value;
const speech = new SpeechSynthesisUtterance(text);
window.speechSynthesis.speak(speech);
}
</script>
</head>
<body>
<h1>🔊 Read It Aloud</h1>
<textarea id="textArea" rows="10" cols="80">
'''
documentHTML5 += result
documentHTML5 += '''
</textarea>
<br>
<button onclick="readAloud()">🔊 Read Aloud</button>
</body>
</html>
'''
components.html(documentHTML5, width=1280, height=300)
def display_file_content(file_path):
"""Display file content with editing capabilities."""
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
if st.session_state.view_mode == 'view':
st.markdown(content)
else:
edited_content = st.text_area(
"Edit content",
content,
height=400,
key=f"edit_{os.path.basename(file_path)}"
)
if st.button("Save Changes", key=f"save_{os.path.basename(file_path)}"):
try:
with open(file_path, 'w', encoding='utf-8') as f:
f.write(edited_content)
st.success(f"Successfully saved changes to {file_path}")
except Exception as e:
st.error(f"Error saving changes: {e}")
except Exception as e:
st.error(f"Error reading file: {e}")
def file_management_sidebar():
"""Redesigned sidebar with improved layout and additional functionality."""
st.sidebar.title("📁 File Management")
md_files = [file for file in glob.glob("*.md") if file.lower() != 'readme.md']
md_files.sort()
st.session_state.files = md_files
if md_files:
st.sidebar.markdown("### Saved Files")
for idx, file in enumerate(md_files):
st.sidebar.markdown("---")
st.sidebar.text(get_time_display(file))
download_link = get_file_download_link(file)
if download_link:
st.sidebar.markdown(download_link, unsafe_allow_html=True)
col1, col2, col3, col4 = st.sidebar.columns(4)
with col1:
if st.button("📄View", key=f"view_{idx}"):
st.session_state.selected_file = file
st.session_state.view_mode = 'view'
with col2:
if st.button("✏️Edit", key=f"edit_{idx}"):
st.session_state.selected_file = file
st.session_state.view_mode = 'edit'
with col3:
if st.button("🔄Run", key=f"rerun_{idx}"):
try:
with open(file, 'r', encoding='utf-8') as f:
content = f.read()
rerun_prefix = """For the markdown below reduce the text to a humorous fun outline with emojis and markdown outline levels in outline that convey all the facts and adds wise quotes and funny statements to engage the reader:
"""
full_prompt = rerun_prefix + content
ai_result = perform_ai_lookup(full_prompt)
saved_file = save_ai_interaction(content, ai_result, is_rerun=True)
if saved_file:
st.success(f"Created fun version in {saved_file}")
st.session_state.selected_file = saved_file
st.session_state.view_mode = 'view'
except Exception as e:
st.error(f"Error during rerun: {e}")
with col4:
if st.button("🗑️Delete", key=f"delete_{idx}"):
if delete_file(file):
st.success(f"Deleted {file}")
st.rerun()
else:
st.error(f"Failed to delete {file}")
st.sidebar.markdown("---")
if st.sidebar.button("📝 Create New Note"):
filename = generate_timestamp_filename("New Note")
with open(filename, 'w', encoding='utf-8') as f:
f.write("# New Markdown File\n")
st.sidebar.success(f"Created: {filename}")
st.session_state.selected_file = filename
st.session_state.view_mode = 'edit'
else:
st.sidebar.write("No markdown files found.")
if st.sidebar.button("📝 Create First Note"):
filename = generate_timestamp_filename("New Note")
with open(filename, 'w', encoding='utf-8') as f:
f.write("# New Markdown File\n")
st.sidebar.success(f"Created: {filename}")
st.session_state.selected_file = filename
st.session_state.view_mode = 'edit'
def perform_ai_lookup(query):
start_time = time.strftime("%Y-%m-%d %H:%M:%S")
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
response1 = client.predict(
query,
20,
"Semantic Search",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
api_name="/update_with_rag_md"
)
Question = '### 🔎 ' + query + '\r\n'
References = response1[0]
ReferenceLinks = ""
results = ""
RunSecondQuery = True
if RunSecondQuery:
response2 = client.predict(
query,
"mistralai/Mixtral-8x7B-Instruct-v0.1",
True,
api_name="/ask_llm"
)
if len(response2) > 10:
Answer = response2
SpeechSynthesis(Answer)
results = Question + '\r\n' + Answer + '\r\n' + References + '\r\n' + ReferenceLinks
st.markdown(results)
st.write('🔍Run of Multi-Agent System Paper Summary Spec is Complete')
end_time = time.strftime("%Y-%m-%d %H:%M:%S")
start_timestamp = time.mktime(time.strptime(start_time, "%Y-%m-%d %H:%M:%S"))
end_timestamp = time.mktime(time.strptime(end_time, "%Y-%m-%d %H:%M:%S"))
elapsed_seconds = end_timestamp - start_timestamp
st.write(f"Start time: {start_time}")
st.write(f"Finish time: {end_time}")
st.write(f"Elapsed time: {elapsed_seconds:.2f} seconds")
filename = generate_filename(query, "md")
create_file(filename, query, results)
return results
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
safe_prompt = re.sub(r'\W+', '_', prompt)[:90]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
def create_file(filename, prompt, response):
with open(filename, 'w', encoding='utf-8') as file:
file.write(prompt + "\n\n" + response)
# --- Main Application ---
def main():
st.markdown("### AI Knowledge Tree Builder 🧠🌱 Cultivate Your AI Mindscape!")
query_params = st.query_params
query = query_params.get('q', '')
show_initial_content = True
if query:
show_initial_content = False
st.write(f"### Search query received: {query}")
try:
ai_result = perform_ai_lookup(query)
saved_file = save_ai_interaction(query, ai_result)
if saved_file:
st.success(f"Saved interaction to {saved_file}")
st.session_state.selected_file = saved_file
st.session_state.view_mode = 'view'
except Exception as e:
st.error(f"Error during AI lookup: {e}")
file_management_sidebar()
if st.session_state.selected_file:
show_initial_content = False
if os.path.exists(st.session_state.selected_file):
st.markdown(f"### Current File: {st.session_state.selected_file}")
display_file_content(st.session_state.selected_file)
else:
st.error("Selected file no longer exists.")
st.session_state.selected_file = None
st.rerun()
if show_initial_content:
display_markdown_tree()
if __name__ == "__main__":
main()
|