awacke1 commited on
Commit
49a96d0
Β·
verified Β·
1 Parent(s): ce7f5a0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +360 -0
README.md CHANGED
@@ -19,3 +19,363 @@ AIKnowledgeTreeBuilder is designed with the following tenets:
19
  5. Memory - Shareable flows with deep-linked research paths
20
  6. Personalized - Rapidly adapts knowledge base to user needs
21
  7. Living Brevity - Easily cloneable, self modifies with data and public to shares results.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  5. Memory - Shareable flows with deep-linked research paths
20
  6. Personalized - Rapidly adapts knowledge base to user needs
21
  7. Living Brevity - Easily cloneable, self modifies with data and public to shares results.
22
+
23
+
24
+ πŸ”§ **Systems, Infrastructure & Low-Level Engineering**
25
+
26
+ πŸ”§ 1. Low-level system integrations compilers Cplusplus
27
+ πŸ”§ 2. Linux or embedded systems experience
28
+ πŸ”§ 3. Hardware acceleration
29
+ πŸ”§ 4. Accelerating ML training inference across AI hardware
30
+ πŸ”§ 5. CUDA kernels
31
+ πŸ”§ 6. Optimum integration for specialized AI hardware
32
+ πŸ”§ 7. Cross-layer performance tuning hardware plus software
33
+ πŸ”§ 8. Data-center scale HPC or ML deployment
34
+ πŸ”§ 9. GPU accelerator architecture and CUDA kernel optimization
35
+ πŸ”§ 10. GPU kernel design and HPC concurrency
36
+ πŸ”§ 11. GPU cluster configuration and job scheduling
37
+ πŸ”§ 12. HPC provisioning and GPU cluster orchestration
38
+ πŸ”§ 13. HPC training pipeline and multi-GPU scheduling
39
+ πŸ”§ 14. HPC scheduling and multi-node debugging
40
+ πŸ”§ 15. HPC or large-batch evaluations
41
+ πŸ”§ 16. Hybrid on-premise and cloud HPC setups
42
+ πŸ”§ 17. Large-scale distributed computing and HPC performance
43
+ πŸ”§ 18. Low-level HPC code Cplusplus Triton and parallel programming
44
+ πŸ”§ 19. Low-level driver optimizations CUDA RDMA etc
45
+ πŸ”§ 20. Multi-GPU training and HPC acceleration
46
+ πŸ”§ 21. Overseeing HPC infrastructure for RL reasoning tasks
47
+ πŸ”§ 22. Performance modeling for large GPU fleets
48
+ πŸ”§ 23. Python and low-level matrix operations custom CUDA kernels
49
+ πŸ”§ 24. Python Cplusplus tooling for robust model tests
50
+ πŸ”§ 25. Stress-testing frontier LLMs and misuse detection
51
+ πŸ”§ 26. Building and optimizing distributed backend systems
52
+ πŸ”§ 27. Distributed system debugging and optimization
53
+ πŸ”§ 28. Distributed system design and MLOps best practices
54
+ πŸ”§ 29. High-performance optimization for ML training and inference
55
+ πŸ”§ 30. Implementing quantitative models of system throughput
56
+ πŸ”§ 31. Load balancing and high-availability design
57
+ πŸ”§ 32. Optimizing system performance under heavy ML loads
58
+ πŸ”§ 33. Performance optimization for LLM inference
59
+ πŸ”§ 34. Python-driven distributed training pipelines
60
+ πŸ”§ 35. Throughput and performance optimization
61
+ πŸ”§ 36. Cross-team platform innovation and proactive ML based resolution
62
+ πŸ”§ 37. Distributed systems design and scalable architectures
63
+ πŸ”§ 38. Observability anomaly detection and automated triage AIOps Python Go
64
+ πŸ”§ 39. ServiceNow expansions AIOps and AI automation
65
+ πŸ”§ 40. User-centric IT workflows and design integration
66
+
67
+ πŸ’» **Software, Cloud, MLOps & Infrastructure**
68
+
69
+ πŸ’» 1. Python APIs and framework optimizations tokenizers datasets
70
+ πŸ’» 2. Python programming
71
+ πŸ’» 3. Rust programming
72
+ πŸ’» 4. PyTorch and Keras development
73
+ πŸ’» 5. TypeScript development
74
+ πŸ’» 6. MongoDB integration
75
+ πŸ’» 7. Kubernetes orchestration
76
+ πŸ’» 8. Building secure and robust developer experiences and APIs
77
+ πŸ’» 9. Full-stack development Nodejs Svelte AWS
78
+ πŸ’» 10. Javascript TypeScript machine learning libraries transformersjs huggingfacejs
79
+ πŸ’» 11. In-browser inference using WebGPU WASM ONNX
80
+ πŸ’» 12. Integrating with major cloud platforms AWS GCP Azure
81
+ πŸ’» 13. Containerization with Docker and MLOps pipelines
82
+ πŸ’» 14. Distributed data processing
83
+ πŸ’» 15. Building essential tooling for ML hubs
84
+ πŸ’» 16. Cloud infrastructure provisioning Terraform Helm
85
+ πŸ’» 17. Coordination of concurrency frameworks Kubernetes etc
86
+ πŸ’» 18. Data pipeline tooling Spark Airflow
87
+ πŸ’» 19. Deep learning systems performance profiling and tuning
88
+ πŸ’» 20. End-to-end MLOps and DevOps practices
89
+ πŸ’» 21. GPU-based microservices and DevOps
90
+ πŸ’» 22. Infrastructure as Code Terraform Kubernetes
91
+ πŸ’» 23. Managing GPU infrastructure at scale K8s orchestration
92
+ πŸ’» 24. Model and pipeline parallel strategies
93
+ πŸ’» 25. Python and Golang for infrastructure automation
94
+ πŸ’» 26. Python-based distributed frameworks Ray Horovod
95
+ πŸ’» 27. Reliability and performance scaling of infrastructure
96
+ πŸ’» 28. System reliability and SRE best practices
97
+ πŸ’» 29. Building observability and debugging tools for crawlers
98
+ πŸ’» 30. Building scalable data pipelines for language model training
99
+ πŸ’» 31. Cloud infrastructure optimization and integration AWS GCP
100
+ πŸ’» 32. Data quality assurance and validation systems
101
+ πŸ’» 33. Designing cloud-native architectures for AI services
102
+ πŸ’» 34. Ensuring system resilience and scalability
103
+ πŸ’» 35. High-availability and scalable system design
104
+ πŸ’» 36. Infrastructure design for large-scale ML systems
105
+ πŸ’» 37. Integration with ML frameworks
106
+ πŸ’» 38. Python and distributed computing frameworks Spark
107
+ πŸ’» 39. Python automation and container orchestration Kubernetes
108
+ πŸ’» 40. Python for automation and infrastructure monitoring
109
+ πŸ’» 41. Python scripting for deployment automation
110
+ πŸ’» 42. Scalable system architecture
111
+ πŸ’» 43. Enhancing reliability quality and time-to-market through performance optimization
112
+ πŸ’» 44. Managing production environments using Azure VSCode Datadog Qualtrics ServiceNow
113
+ πŸ’» 45. Building MLOps pipelines for containerizing models with Docker TypeScript Rust MongoDB Svelte TailwindCSS Kubernetes
114
+
115
+ πŸ€– **Machine Learning, AI & Model Development**
116
+
117
+ πŸ€– 1. Performance tuning for Transformers in NLP CV and Speech
118
+ πŸ€– 2. Industrial-level ML for text generation inference
119
+ πŸ€– 3. Optimizing and scaling real-world ML services
120
+ πŸ€– 4. Reliability and performance monitoring for ML systems
121
+ πŸ€– 5. Ablation and training small models for data-quality analysis
122
+ πŸ€– 6. Reducing model size and complexity via quantization
123
+ πŸ€– 7. Neural sparse models and semantic dense retrieval SPLADE BM25
124
+ πŸ€– 8. LLM usage and fine-tuning with chain-of-thought prompting
125
+ πŸ€– 9. Energy efficiency and carbon footprint analysis in ML
126
+ πŸ€– 10. Post-training methods for LLMs RLHF PPO DPO instruction tuning
127
+ πŸ€– 11. Building LLM agents with external tool usage
128
+ πŸ€– 12. Creating LLM agents that control GUIs via screen recordings
129
+ πŸ€– 13. Building web-scale high-quality LLM training datasets
130
+ πŸ€– 14. LLM-based code suggestions in Gradio Playground
131
+ πŸ€– 15. Speech-to-text text-to-speech and speaker diarization
132
+ πŸ€– 16. Abuse detection and ML-based risk scoring
133
+ πŸ€– 17. AI safety and alignment methodologies RLHF reward models
134
+ πŸ€– 18. Building ML-driven products using Python and PyTorch
135
+ πŸ€– 19. Building massive training sets for LLMs
136
+ πŸ€– 20. Developing next-generation AI capabilities
137
+ πŸ€– 21. Collaborative research on AI risk and safety
138
+ πŸ€– 22. Distributed training frameworks for large models
139
+ πŸ€– 23. Experimental large-model prototypes
140
+ πŸ€– 24. Exploratory ML research with LLMs and RL
141
+ πŸ€– 25. Large-scale retrieval optimization RAG etc
142
+ πŸ€– 26. Managing large ML architectures using Transformers
143
+ πŸ€– 27. NLP pipelines using PyTorch and Transformers
144
+ πŸ€– 28. Python-based data pipelines for query handling
145
+ πŸ€– 29. Python-based LLM experimentation
146
+ πŸ€– 30. Transformer-based LLM development and fine-tuning
147
+ πŸ€– 31. Transformer modeling and novel architecture prototyping GPTlike
148
+ πŸ€– 32. Vector databases and semantic search FAISS etc
149
+ πŸ€– 33. Advanced distributed training techniques
150
+ πŸ€– 34. Coordinating experimental design using Python
151
+ πŸ€– 35. Designing experiments to probe LLM inner workings
152
+ πŸ€– 36. Empirical AI research and reinforcement learning experiments
153
+ πŸ€– 37. Leveraging Python for ML experiment pipelines
154
+ πŸ€– 38. Reverse-engineering neural network mechanisms
155
+ πŸ€– 39. Strategic roadmap for safe LLM development
156
+ πŸ€– 40. Transformer-based LLM interpretability and fine-tuning
157
+ πŸ€– 41. AI DL model productization using established frameworks
158
+ πŸ€– 42. Utilizing AI frameworks PyTorch JAX TensorFlow TorchDynamo
159
+ πŸ€– 43. Building AI inference APIs and MLOps solutions with Python
160
+ πŸ€– 44. Developing agentic AI RAG and generative AI solutions LangChain AutoGen
161
+ πŸ€– 45. End-to-end AI lifecycle management and distributed team leadership
162
+ πŸ€– 46. Full-stack AI shipping with parallel and distributed training
163
+ πŸ€– 47. GPU kernel integration with CUDA TensorRT and roadmap alignment
164
+ πŸ€– 48. Large-language model inference and microservices design
165
+ πŸ€– 49. LLM-based enterprise analytics systems
166
+ πŸ€– 50. LLM diffusion-based product development
167
+ πŸ€– 51. LLM alignment and RLHF pipelines for model safety
168
+ πŸ€– 52. Mixed-precision and HPC algorithm development
169
+ πŸ€– 53. Optimizing open-source DL frameworks PyTorch TensorFlow
170
+ πŸ€– 54. Parallel and distributed training architectures and reinforcement learning methods PPO SAC QLearning
171
+ πŸ€– 55. Python development for large-scale MLOps deployment
172
+ πŸ€– 56. Scaling AI inference on hundreds of GPUs
173
+ πŸ€– 57. System design for multi-agent AI workflows
174
+ πŸ€– 58. Developing generative AI solutions with Python Streamlit Gradio and Torch
175
+ πŸ€– 59. Developing Web AI solutions with Javascript TypeScript and HuggingFacejs
176
+ πŸ€– 60. Creating WebML applications for on-device model inference
177
+ πŸ€– 61. Building JSTS libraries for in-browser inference using ONNX and quantization with WebGPU WebNN and WASM
178
+ πŸ€– 62. Driving forward quantization in the open-source ecosystem Accelerate PEFT Diffusers Bitsandbytes AWQ AutoGPTQ
179
+ πŸ€– 63. Designing modern search solutions combining semantic and lexical search dense bi-encoder models SPLADE BM25
180
+ πŸ€– 64. Training neural sparse models with Sentence Transformers integration
181
+ πŸ€– 65. Leveraging chain-of-thought techniques in small models to outperform larger models
182
+ πŸ€– 66. Addressing hardware acceleration and numerical precision challenges for scalable software
183
+
184
+ πŸ“Š **Data Engineering, Analytics & Data Governance**
185
+
186
+ πŸ“Š 1. Advanced analytics and forecasting using Python R
187
+ πŸ“Š 2. Alerting systems and dashboards Grafana etc
188
+ πŸ“Š 3. Collaboration with data science teams
189
+ πŸ“Š 4. Data modeling and warehousing
190
+ πŸ“Š 5. Data storytelling and stakeholder communications
191
+ πŸ“Š 6. Data warehousing and BI tools Looker etc
192
+ πŸ“Š 7. Distributed compute frameworks Spark Flink
193
+ πŸ“Š 8. ETL pipelines using Airflow and Spark
194
+ πŸ“Š 9. Experiment design and user behavior modeling
195
+ πŸ“Š 10. Handling large event data Kafka S3
196
+ πŸ“Š 11. Managing data lakes and warehousing
197
+ πŸ“Š 12. Python and SQL based data pipelines for finance
198
+ πŸ“Š 13. Real-time anomaly detection using Python and streaming
199
+ πŸ“Š 14. Root-cause analysis and incident response
200
+ πŸ“Š 15. SQL and Python workflows for data visualization
201
+ πŸ“Š 16. Product analytics and funnel insights
202
+ πŸ“Š 17. Complex data pipelines and HPC optimization techniques
203
+ πŸ“Š 18. Large-scale data ingestion transformation and curation
204
+ πŸ“Š 19. Multi-modal data processing for diverse inputs
205
+
206
+ πŸ”’ **Security, Compliance & Reliability**
207
+
208
+ πŸ”’ 1. Attack simulations and detection pipelines
209
+ πŸ”’ 2. Automation with Python and Bash
210
+ πŸ”’ 3. Cross-team incident response orchestration
211
+ πŸ”’ 4. IAM solutions AzureAD Okta
212
+ πŸ”’ 5. MacOS and iOS endpoint security frameworks
213
+ πŸ”’ 6. ML system vulnerability management
214
+ πŸ”’ 7. Risk assessment and vulnerability management
215
+ πŸ”’ 8. Security audits and penetration testing
216
+ πŸ”’ 9. Security best practices for AI products appsec devsecops
217
+ πŸ”’ 10. Secure architecture for HPC and ML pipelines
218
+ πŸ”’ 11. Security privacy and compliance in data management
219
+ πŸ”’ 12. Coordinating with security and compliance teams
220
+ πŸ”’ 13. Designing fault-tolerant high-availability LLM serving systems
221
+ πŸ”’ 14. Designing resilient and scalable architectures
222
+ πŸ”’ 15. Ensuring compliance and secure transactions
223
+ πŸ”’ 16. Familiarity with technical operations tools for security
224
+ πŸ”’ 17. Managing security processes for AI systems
225
+ πŸ”’ 18. Performance tuning for LLM serving systems
226
+ πŸ”’ 19. Process optimization and rapid troubleshooting for security
227
+ πŸ”’ 20. Python for reliability monitoring and automation
228
+ πŸ”’ 21. Python-based monitoring and fault-tolerance solutions
229
+ πŸ”’ 22. Risk management and compliance strategies
230
+ πŸ”’ 23. Cost optimization and reliability in cloud environments
231
+ πŸ”’ 24. Data quality standards and compliance Informatica Collibra Alation
232
+ πŸ”’ 25. Enterprise-wide data governance and policies for security
233
+ πŸ”’ 26. Hybrid cloud integration for secure operations
234
+ πŸ”’ 27. Identity management MFA ActiveDirectory AzureAD SSO ZeroTrust
235
+ πŸ”’ 28. Scalable database security MySQL PostgreSQL MongoDB Oracle
236
+ πŸ”’ 29. Security and operational excellence in IT and cloud
237
+
238
+ πŸ‘₯ **Leadership, Management & Collaboration**
239
+
240
+ πŸ‘₯ 1. Coordinating engineering design and research teams
241
+ πŸ‘₯ 2. Cross-functional leadership for platform roadmaps
242
+ πŸ‘₯ 3. Cross-functional leadership across finance and engineering
243
+ πŸ‘₯ 4. Cross-team collaboration and project leadership
244
+ πŸ‘₯ 5. Data-driven product management AB testing and analytics
245
+ πŸ‘₯ 6. Deep knowledge of AI frameworks and constraints
246
+ πŸ‘₯ 7. Driving cross-team alignment on HPC resources
247
+ πŸ‘₯ 8. People and team management for data teams
248
+ πŸ‘₯ 9. Stakeholder management and vendor oversight
249
+ πŸ‘₯ 10. Team-building and product strategy
250
+ πŸ‘₯ 11. Team leadership and project delivery
251
+ πŸ‘₯ 12. Balancing innovative research with product delivery
252
+ πŸ‘₯ 13. Balancing rapid product delivery with AI safety standards
253
+ πŸ‘₯ 14. Bridging customer requirements with technical development
254
+ πŸ‘₯ 15. Collaboration across diverse technology teams
255
+ πŸ‘₯ 16. Coordinating reinforcement learning experiments
256
+ πŸ‘₯ 17. Coordinating with security and compliance teams
257
+ πŸ‘₯ 18. Cross-functional agile collaboration for ML scalability
258
+ πŸ‘₯ 19. Cross-functional team coaching and agile processes
259
+ πŸ‘₯ 20. Cross-functional stakeholder management
260
+ πŸ‘₯ 21. Cross-regional team alignment
261
+ πŸ‘₯ 22. Cross-team collaboration for ML deployment
262
+ πŸ‘₯ 23. Data-driven growth strategies for AI products
263
+ πŸ‘₯ 24. Data-driven strategy implementation
264
+ πŸ‘₯ 25. Detailed project planning and stakeholder coordination
265
+ πŸ‘₯ 26. Driving execution of global market entry strategies
266
+ πŸ‘₯ 27. Leading high-impact zero-to-one ML development teams
267
+ πŸ‘₯ 28. Leading interdisciplinary ML research initiatives
268
+ πŸ‘₯ 29. Leading teams building reinforcement learning systems
269
+ πŸ‘₯ 30. Leading teams in ML interpretability research
270
+ πŸ‘₯ 31. Overseeing Python-driven ML infrastructure
271
+ πŸ‘₯ 32. Vendor and cross-team coordination
272
+ πŸ‘₯ 33. Facilitating cross-disciplinary innovation
273
+
274
+ πŸ“± **Full-Stack, UI, Mobile & Product Development**
275
+
276
+ πŸ“± 1. Building internal AI automation tools
277
+ πŸ“± 2. CI CD automation and testing frameworks
278
+ πŸ“± 3. Cloud-based microservices and REST GraphQL APIs
279
+ πŸ“± 4. GraphQL or REST based data fetching
280
+ πŸ“± 5. Integrating AI chat features in mobile applications
281
+ πŸ“± 6. LLM integration for user support flows
282
+ πŸ“± 7. MacOS iOS fleet management and security
283
+ πŸ“± 8. MDM solutions and iOS provisioning
284
+ πŸ“± 9. Native Android development Kotlin Java
285
+ πŸ“± 10. Observability and robust logging tracing
286
+ πŸ“± 11. Performance tuning and enhancing user experience for mobile
287
+ πŸ“± 12. Python Node backend development for AI features
288
+ πŸ“± 13. Rapid prototyping of AI based internal apps
289
+ πŸ“± 14. React Nextjs with Python for web services
290
+ πŸ“± 15. React TypeScript front-end development
291
+ πŸ“± 16. Integrating with GPT and other LLM endpoints
292
+ πŸ“± 17. TypeScript React and Python backend development
293
+ πŸ“± 18. Zero-touch deployment and patching
294
+ πŸ“± 19. Active engagement with open-source communities
295
+ πŸ“± 20. API design for scalable LLM interactions
296
+ πŸ“± 21. Bridging native mobile frontends with Python backends
297
+ πŸ“± 22. Bridging Python based ML models with frontend tooling
298
+ πŸ“± 23. Building internal tools to boost productivity in ML teams
299
+ πŸ“± 24. Building intuitive UIs integrated with Python backed ML
300
+ πŸ“± 25. Building robust developer infrastructure for ML products
301
+ πŸ“± 26. Crafting user-centric designs for AI interfaces
302
+ πŸ“± 27. Developer tools for prompt engineering and model testing
303
+ πŸ“± 28. End-to-end product delivery in software development
304
+ πŸ“± 29. Enhancing secure workflows and enterprise integrations
305
+ πŸ“± 30. Experimentation and iterative product development
306
+ πŸ“± 31. Full-stack development for ML driven products
307
+ πŸ“± 32. Integrating robust UIs with backend ML models
308
+ πŸ“± 33. Iterative design based on user feedback
309
+ πŸ“± 34. Mobile app development incorporating AI features
310
+ πŸ“± 35. Optimizing TypeScript Node build systems
311
+ πŸ“± 36. Python based API and data pipeline creation
312
+ πŸ“± 37. Senior engineering for practical AI and ML solutions
313
+ πŸ“± 38. Creating Python and Javascript HTML libraries for ML use cases
314
+ πŸ“± 39. Developing specialized software for healthcare ML use cases
315
+ πŸ“± 40. Utilizing library frameworks for scalable healthcare solutions
316
+ πŸ“± 41. Writing apps using Python Rust CUDA Transformers Keras
317
+ πŸ“± 42. Building AI solutions for healthcare with open-source libraries and Azure SaaS
318
+ πŸ“± 43. Designing and developing secure robust apps and APIs using Streamlit and Gradio
319
+ πŸ“± 44. Expertise with tools like Transformers Diffusers Accelerate PEFT Datasets
320
+ πŸ“± 45. Leveraging deep learning frameworks PyTorch XLA and cloud platforms
321
+
322
+ 🎯 **Specialized Domains & Emerging Technologies**
323
+
324
+ 🎯 1. 3D computer vision and neural rendering radiance fields
325
+ 🎯 2. Advanced 3D reconstruction techniques Gaussian splatting NERF
326
+ 🎯 3. Graphics engines and deep learning for graphics Unreal Unity
327
+ 🎯 4. Low-level rendering pipelines DirectX Vulkan DX12
328
+ 🎯 5. Performance optimized computer vision algorithms real-time tracking relighting
329
+ 🎯 6. Semantic video search and 3D reconstruction services
330
+ 🎯 7. Agent frameworks and LLM pipelines LangChain AutoGen
331
+ 🎯 8. Concurrency in Cplusplus Python and vector database integration
332
+ 🎯 9. Cross-layer performance analysis and debugging techniques
333
+ 🎯 10. EDA and transistor-level performance modeling SPICE BSIM STA
334
+ 🎯 11. GPU and SoC modeling and SoC architecture SystemC TLM
335
+ 🎯 12. Next-generation hardware bringup and system simulation
336
+ 🎯 13. Parallel computing fundamentals and performance simulation
337
+ 🎯 14. Advanced development for programmable networks SDN SONiC P4
338
+ 🎯 15. System design for multi-agent AI workflows
339
+ 🎯 16. Advanced AI for self-driving software
340
+ 🎯 17. Autonomous vehicle data pipelines and debugging
341
+ 🎯 18. Car fleet software updates OTA and telemetry management
342
+ 🎯 19. Large-scale multi-sensor data operations and calibration
343
+ 🎯 20. Path planning and decision-making in robotics
344
+ 🎯 21. Real-time embedded systems for robotics Cplusplus Python
345
+ 🎯 22. Sensor fusion and HPC integration for perception systems
346
+ 🎯 23. Domain randomization and sim-to-real transfer for reinforcement learning
347
+ 🎯 24. GPU accelerated physics simulation Isaac Sim
348
+ 🎯 25. Large-scale reinforcement learning methods PPO SAC QLearning
349
+ 🎯 26. Policy optimization for robotics at scale
350
+ 🎯 27. Reinforcement learning orchestration and simulation based training
351
+ 🎯 28. Communication libraries NCCL NVSHMEM UCX
352
+ 🎯 29. HPC networking InfiniBand RoCE and distributed GPU programming
353
+ 🎯 30. GPU verification architecture techniques TLM SystemC modeling
354
+ 🎯 31. Hardware prototyping and verification SDN SONiC P4 programmable hardware
355
+ 🎯 32. GPU communications libraries management and performance tuning
356
+ 🎯 33. Senior software architecture for data centers EthernetIP design switch OS
357
+ 🎯 34. Developing Web AI solutions using Python Streamlit Gradio and Torch
358
+ 🎯 35. Developing Web AI solutions with Javascript TypeScript and HuggingFacejs
359
+ 🎯 36. Creating WebML applications for on-device model inference
360
+ 🎯 37. Building JSTS libraries for in-browser inference using ONNX and quantization with WebGPU WebNN and WASM
361
+ 🎯 38. Driving forward quantization in the open-source ecosystem Accelerate PEFT Diffusers Bitsandbytes AWQ AutoGPTQ
362
+ 🎯 39. Designing modern search solutions combining semantic and lexical search dense bi-encoder models SPLADE BM25
363
+ 🎯 40. Training neural sparse models with Sentence Transformers integration
364
+ 🎯 41. Leveraging chain-of-thought techniques in small models to outperform larger models
365
+ 🎯 42. Addressing hardware acceleration and numerical precision challenges for scalable software
366
+
367
+ πŸ“’ **Community, Open-Source & Communication**
368
+
369
+ πŸ“’ 1. Educating the ML community on accelerating training and inference workloads
370
+ πŸ“’ 2. Working through strategic collaborations
371
+ πŸ“’ 3. Contributing documentation and code examples for technical and business audiences
372
+ πŸ“’ 4. Building and evangelizing demos and strategic partner conversations
373
+ πŸ“’ 5. Sharing fast Python AI development code samples and demos
374
+ πŸ“’ 6. Communicating effectively in public speaking and technical education
375
+ πŸ“’ 7. Engaging on social platforms GitHub LinkedIn Twitter Reddit
376
+ πŸ“’ 8. Bringing fresh informed ideas while collaborating in a decentralized manner
377
+ πŸ“’ 9. Writing technical documentation examples and notebooks to demonstrate new features
378
+ πŸ“’ 10. Writing clear documentation across the product lifecycle
379
+ πŸ“’ 11. Contributing to open-source libraries Transformers Datasets Accelerate
380
+ πŸ“’ 12. Communicating via GitHub forums or Slack
381
+ πŸ“’ 13. Demonstrating creativity to make complex technology accessible