File size: 7,398 Bytes
34cf551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import streamlit as st
import time

# Initialize the slide index in session state (if not already set)
if "slide_idx" not in st.session_state:
    st.session_state.slide_idx = 0

# Define a list of 10 slides. Each slide has a left and a right page.
# Each paper entry contains the paper number, title, arXiv link, and code link.
slides = [
    {
        "left": """
**#1. Neural Module Networks for Reasoning**  
[Arxiv](https://arxiv.org/abs/1234.5678) | [Code](https://github.com/example/nnm)

**#2. Neuro-Symbolic AI for Reasoning**  
[Arxiv](https://arxiv.org/abs/2345.6789) | [Code](https://github.com/example/nsa)
        """,
        "right": """
**#3. Transformer Models for Multi-step Reasoning**  
[Arxiv](https://arxiv.org/abs/3456.7890) | [Code](https://github.com/example/transformer)

**#4. Graph Neural Networks in AI**  
[Arxiv](https://arxiv.org/abs/4567.8901) | [Code](https://github.com/example/gnn)
        """
    },
    {
        "left": """
**#5. Memory-Augmented Networks for Episodic Recall**  
[Arxiv](https://arxiv.org/abs/5678.9012) | [Code](https://github.com/example/memory)

**#6. Self-Supervised Learning for AI**  
[Arxiv](https://arxiv.org/abs/6789.0123) | [Code](https://github.com/example/selfsup)
        """,
        "right": """
**#7. Reinforcement Learning from Human Feedback**  
[Arxiv](https://arxiv.org/abs/7890.1234) | [Code](https://github.com/example/rlhf)

**#8. Transfer Learning in AI Systems**  
[Arxiv](https://arxiv.org/abs/8901.2345) | [Code](https://github.com/example/transfer)
        """
    },
    {
        "left": """
**#9. Deep Learning for Medical Imaging**  
[Arxiv](https://arxiv.org/abs/9012.3456) | [Code](https://github.com/example/medimg)

**#10. Computer Vision in Telemedicine**  
[Arxiv](https://arxiv.org/abs/0123.4567) | [Code](https://github.com/example/cvtele)
        """,
        "right": """
**#11. Automated Clinical Documentation via NLP**  
[Arxiv](https://arxiv.org/abs/1234.5679) | [Code](https://github.com/example/clinicalnlp)

**#12. Real-Time Transcription and Analysis**  
[Arxiv](https://arxiv.org/abs/2345.6780) | [Code](https://github.com/example/realtime)
        """
    },
    {
        "left": """
**#13. Personalized Treatment Recommendation**  
[Arxiv](https://arxiv.org/abs/3456.7891) | [Code](https://github.com/example/treatment)

**#14. Integration of Genomic Data in AI**  
[Arxiv](https://arxiv.org/abs/4567.8902) | [Code](https://github.com/example/genomics)
        """,
        "right": """
**#15. Crowdsourcing in AI Evaluation**  
[Arxiv](https://arxiv.org/abs/5678.9013) | [Code](https://github.com/example/crowd)

**#16. Evaluating AI with Human Feedback**  
[Arxiv](https://arxiv.org/abs/6789.0124) | [Code](https://github.com/example/evaluation)
        """
    },
    {
        "left": """
**#17. Gradio and Streamlit for Rapid Prototyping**  
[Arxiv](https://arxiv.org/abs/7890.1235) | [Code](https://github.com/example/gradio)

**#18. Interactive Demos in Python**  
[Arxiv](https://arxiv.org/abs/8901.2346) | [Code](https://github.com/example/interactive)
        """,
        "right": """
**#19. HPC for Scaling AI Models**  
[Arxiv](https://arxiv.org/abs/9012.3457) | [Code](https://github.com/example/hpc)

**#20. Model Parallelism and Pipeline Techniques**  
[Arxiv](https://arxiv.org/abs/0123.4568) | [Code](https://github.com/example/parallel)
        """
    },
    {
        "left": """
**#21. Imitation Learning for Behavior Cloning**  
[Arxiv](https://arxiv.org/abs/1234.5680) | [Code](https://github.com/example/imitate)

**#22. GANs for Mirroring Human Actions**  
[Arxiv](https://arxiv.org/abs/2345.6781) | [Code](https://github.com/example/ganmirror)
        """,
        "right": """
**#23. Empathic AI for Shared World Modeling**  
[Arxiv](https://arxiv.org/abs/3456.7892) | [Code](https://github.com/example/empathic)

**#24. Deep Reinforcement Learning in Clinical Support**  
[Arxiv](https://arxiv.org/abs/4567.8903) | [Code](https://github.com/example/deeprl)
        """
    },
    {
        "left": """
**#25. Mixture of Experts for AI Systems**  
[Arxiv](https://arxiv.org/abs/5678.9014) | [Code](https://github.com/example/moe)

**#26. Conditional Computation and Routing Strategies**  
[Arxiv](https://arxiv.org/abs/6789.0125) | [Code](https://github.com/example/routing)
        """,
        "right": """
**#27. Ensemble Learning in AI**  
[Arxiv](https://arxiv.org/abs/7890.1236) | [Code](https://github.com/example/ensemble)

**#28. Knowledge Distillation Across Models**  
[Arxiv](https://arxiv.org/abs/8901.2347) | [Code](https://github.com/example/distill)
        """
    },
    {
        "left": """
**#29. Neural Networks for Adversarial Attacks**  
[Arxiv](https://arxiv.org/abs/9012.3458) | [Code](https://github.com/example/adversary)

**#30. Robust Training with Natural Transformations**  
[Arxiv](https://arxiv.org/abs/0123.4569) | [Code](https://github.com/example/robust)
        """,
        "right": """
**#31. Text-to-Image Translation with GANs**  
[Arxiv](https://arxiv.org/abs/1234.5681) | [Code](https://github.com/example/t2i)

**#32. Controlled Caption Generation via Adversarial Attacks**  
[Arxiv](https://arxiv.org/abs/2345.6782) | [Code](https://github.com/example/caption)
        """
    },
    {
        "left": """
**#33. Multi-Modal Autoencoders for Medical Data**  
[Arxiv](https://arxiv.org/abs/3456.7893) | [Code](https://github.com/example/multimodal)

**#34. Integration of Vision and Language in Healthcare**  
[Arxiv](https://arxiv.org/abs/4567.8904) | [Code](https://github.com/example/visionlang)
        """,
        "right": """
**#35. Reinforcement Learning for Medical QA Systems**  
[Arxiv](https://arxiv.org/abs/5678.9015) | [Code](https://github.com/example/medicalqa)

**#36. Large-Scale Clinical Language Models**  
[Arxiv](https://arxiv.org/abs/6789.0126) | [Code](https://github.com/example/clinicalllm)
        """
    },
    {
        "left": """
**#37. Efficient Transformers for Clinical NLP**  
[Arxiv](https://arxiv.org/abs/7890.1237) | [Code](https://github.com/example/lightllm)

**#38. Continual Learning for Medical AI**  
[Arxiv](https://arxiv.org/abs/8901.2348) | [Code](https://github.com/example/continual)
        """,
        "right": """
**#39. Active Learning for AI Annotation**  
[Arxiv](https://arxiv.org/abs/9012.3459) | [Code](https://github.com/example/active)

**#40. Automated Model Selection and Routing**  
[Arxiv](https://arxiv.org/abs/0123.4570) | [Code](https://github.com/example/modelselect)
        """
    }
]

num_slides = len(slides)
current_slide = slides[st.session_state.slide_idx]

# Display slide header (e.g. "Slide 1 of 10")
st.markdown(f"## Slide {st.session_state.slide_idx + 1} of {num_slides}")

# Display left and right pages side by side
col_left, col_right = st.columns(2)
with col_left:
    st.markdown("### Left Page")
    st.markdown(current_slide["left"], unsafe_allow_html=True)
with col_right:
    st.markdown("### Right Page")
    st.markdown(current_slide["right"], unsafe_allow_html=True)

# Countdown timer (15 seconds) for auto-advancement
for remaining in range(15, 0, -1):
    st.markdown(f"**Advancing in {remaining} seconds...**")
    time.sleep(1)

# Advance to the next slide (wrap around if at the end)
st.session_state.slide_idx = (st.session_state.slide_idx + 1) % num_slides

# Rerun the app to display the next slide
st.rerun()